Properties of PFSA/PVDF Coaxial Core-Shell Fiber Proton Exchange Membranes |
Authors: Gao Min, Yu Weiming, Wang Xiaozhou, Cui Fujun, He Gaohong, Wu Xuemei |
Units: State Key Laboratory of Fine Chemicals, Dalian University of Technology, Membrane Science and Technology Research and Development Center, Dalian 116024, Liaoning, China; Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221 |
KeyWords: proton exchange membrane; electrospinning; core-shell fiber; fuel cell; proton transport channel |
ClassificationCode:TM911.42 |
year,volume(issue):pagination: 2022,42(6):94-100 |
Abstract: |
Construction of coaxial electrospun PFSA/PVDF proton exchange membrane with core-shell fiber structure. The PFSA shell fiber in the coaxial fiber provides long-range proton transmission channels and high electrical conductivity, the PVDF core fiber provides strong mechanical properties and anti-swelling properties, and the coaxial fiber confinement effect The PFSA component in the primary core fiber enhances the adhesion The interface of PFSA and PVDF is combined. Compared with the blended cast membrane and the uniaxial electrospun membrane, the coaxial electrospun membrane exhibited higher mechanical strength, proton conductivity and battery performance under low swelling conditions. The maximum tensile strength of the coaxial electrospun membrane is 60.8 MPa, which is 55.5% higher than that of the uniaxial electrospun membrane (39.1 MPa); its maximum tensile strain is 180.2%, which is 122.5% higher than that of the cast membrane. At 80 °C, the proton conductivity of the coaxial electrospun membrane is as high as 206.9 mS/cm, which is comparable to that of Nafion 211, and its peak power density is 941.7 mW/cm2, which is 80.9% higher than that of the cast membrane, and higher than that of the uniaxial electrospun membrane (748.9 mW/cm2) increased by 25.7%. The coaxial electrospun membrane also showed excellent gas barrier and antioxidant properties. Studies have shown that coaxial electrospun proton exchange membranes have better prospects for fuel cells. |
Funds: |
辽宁省化学助剂合成与分离省市共建重点实验室2020年开放课题(ZJKF2012);国家自然科学基金创新研究群体项目(22021005);中央高校基本科研业务费(DUT21ZD406) |
AuthorIntro: |
高敏(1996-),女,河南商丘人,硕士,质子交换膜及燃料电池 |
Reference: |
[1] 林林, 吴睿, 张欣欣. 商业尺寸质子交换膜燃料电池性能实验研究[J]. 哈尔滨工业大学学报, 2011, 43(03): 117-121. [2] Komala K, Kumar K P, Cherukuri S H C. Storage and non-Storage Methods of Power balancing to counter Uncertainty in Hybrid Microgrids - A review[J]. J Energy Storage, 2021,36(5):102348. [3] Tang A, Crisci L, Bonville L, et al. An overview of bipolar plates in proton exchange membrane fuel cells[J]. J Renew Sustain Ener, 2021, 13(2): 22701. [4] Klaus Schmidt-Rohr Q C. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes[J]. Nat Mater, 2007, 7(1): 75-83. [5] Xing L, Shi W, Su H, et al. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization[J]. Energy, 2019, 177(3): 445-464. [6] Lin H, Yu T L, Han F. A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC[J]. J Polym Res, 2007, 13(5): 379-385. [7] Hung T F, Huang J, Chuang H J, et al. Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell[J]. J Power Sources, 2008, 184(1): 165-171. [8] Karimi M B, Mohammadi F, Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review[J]. Int J Hydrogen Energ, 2019, 44(54): 28919-28938. [9] Bin D, Hong C, Joshua S, et al. Super Proton Conductive Nafion Nanofibers: Discovery, Fabrication, Properties, and Fuel Cell Performance[J]. ECS Transactions, 2011, 41(1):136-141. [10] Ballengee J B, Pintauro P N. Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats[J]. J Membrane Sci, 2013, 44(2): 187-195. [11] Wei M, Jiang M, Liu X, et al. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance[J]. J Power Sources, 2016, 32(7): 384-393. [12] Li L, Su L, Zhang Y. Enhanced performance of supercritical CO2 treated Nafion 212 membranes for direct methanol fuel cells[J]. Int J Hydrogen Energ, 2012, 37(5): 4439-4447. [13] Lin Y, Yen C, Ma C M, et al. High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes[J]. J Power Sources, 2007, 171(2): 388-395. [14] Kim J, Ryu S, Lee J, et al. Preparation of high-conductivity QPPO (quaternary-aminated poly (2,6-dimethyl-1,4-phenyleneoxide)) membranes by electrical treatment[J]. J Membrane Sci, 2018, 553(2): 82-89. [15] Bazrgar Bajestani M, Mousavi S A. Effect of casting solvent on the characteristics of Nafion/TiO2 nanocomposite membranes for microbial fuel cell application[J]. Int J Hydrogen Energ, 2016, 41(1): 476-482. [16] Roy T, Wanchoo S K, Pal K. Synergetic proton-conducting effect of sulfonated PEEK-MO2-CNT membranes for PEMFC applications[J]. Ionics, 2021, 27(11): 4859-4873. [17] Feng M, Huang Y, Cheng T, et al. Synergistic effect of graphene oxide and carbon nanotubes on sulfonated poly(arylene ether nitrile)-based proton conducting membranes[J]. Int J Hydrogen Energ, 2017, 42(12): 8224-8232. [18] Wu Y, He G, Wu X, et al. Confinement of functionalized graphene oxide in sulfonated poly (ether ether ketone) nanofibers by coaxial electrospinning for polymer electrolyte membranes[J]. Int J Hydrogen Energ, 2019, 44(14): 7494-7504. [19] Xue J, Xie J, Liu W, et al. Electrospun Nanofibers: New Concepts, Materials, and Applications[J]. Accounts Chem Res, 2017, 50(8): 1976-1987. [20] Fuqiang L, Baolian Y, Danmin X, et al. Nafion/PTFE composite membranes for fuel cell applications[J]. J Membrane Sci, 2002, 212(1). [21] Song M, Kim Y, Fenton J M, et al. Chemically-modified Nafion®/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells[J]. J Power Sources, 2003, 117(1-2): 14-21. [22] Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers[J]. Polymer, 2008, 49(10): 2387-2425. [23] Lei T, Yu L, Zheng G, et al. Electrospinning-induced preferred dipole orientation in PVDF fibers[J]. J Mater Sci, 2015, 50(12): 4342-4347. [24] Woo Park J, Wycisk R, Lin G, et al. Electrospun Nafion/PVDF single-fiber blended membranes for regenerative H2/Br2 fuel cells[J]. J Membrane Sci, 2017, 541(6): 85-92. [25] Park J W, Wycisk R, Pintauro P N. Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells[J]. J Membrane Sci, 2015, 490(5): 103-112. [26] Brodt M, Wycisk R, Dale N, et al. Power Output and Durability of Electrospun Fuel Cell Fiber Cathodes with PVDF and Nafion/PVDF Binders[J]. J Electrochem Soc, 2016, 163(5): F401-F410. [27] Nawn G, Vezzù K, Negro E, et al. Structural analyses of blended Nafion/PVDF electrospun nanofibers[J]. Phys Chem Chem Phys, 2019, 21(20): 10357-10369. [28] Ballengee J B, Pintauro P N. Composite Fuel Cell Membranes from Dual-Nanofiber Electrospun Mats[J]. Macromolecules, 2011, 44(18): 7307-7314. [29] Yuan Q, Fu Z, Wang Y, et al. Coaxial electrospun sulfonated poly (ether ether ketone) proton exchange membrane for conductivity-strength balance[J]. J Membrane Sci, 2020, 59(5): 117516. [30] 李芳冰. 全氟磺酸纳米复合纤维膜材料的制备与表征[D]: 华东理工大学, 2015. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号