Fabrication and performance of poly(piperazine-amide) nanofiltration membrane with innate positive charge |
Authors: WANG Yingwei, ZHANG Mengmeng, JIANG Chi, HOU Yingfei |
Units: 1Sinopec Petroleum Engineering Design Co. LTD, Dongying, 257026; 2University of Petroleum (East China), Qingdao 266580 |
KeyWords: positively charged nanofiltration membrane; Interfacial polymerization; poly(piperazine-amide |
ClassificationCode:TQ028 |
year,volume(issue):pagination: 2023,43(2):41-48 |
Abstract: |
The charge on the surface of nanofiltration membrane is one of the most important factors that affect the separation performance of nanofiltration membrane. The traditional polypiperazine amide nanofiltration membrane has negative charge on the surface, thus show a relatively low rejection toward divalent cations such as calcium and magnesium. In this paper, a positively charged poly (piperazine amide) nanofiltration membrane was prepared by reducing the interfacial resistance of monomer and enhancing the interfacial driving force of monomer, promoting the diffusion of piperazine monomer to the oil phase and leaving an excess of Amino groups after the interfacial polymerization. The chemical properties, surface morphology, structure and chargeability of the composite membranes were characterized by infrared spectroscopy, XPS, SEM, AFM, Zeta potential meter and other instruments, and the membrane properties were evaluated by cross-flow test. The results showed that the nanofiltration membrane showed excellent retention characteristics of positively charged membrane, and the retention sequence of different salt solutions was CaCl2>NaCl>Na2SO4, in which CaCl2 retained 95.3%, flux 118.4 L·m-2·h-1·MPa-1;. |
Funds: |
国家重点研发计划项目(2019YFE0115600);中国博士后科学基金(2021M693502) |
AuthorIntro: |
王英伟(1982年10月),男,山东单县,高级工程师,本科,学士,油气田地面工程及分离工程,wangyw.osec@sinopec.com |
Reference: |
[1]郭世伟,郑力玮,罗建泉,等.纳滤膜在高盐废水处理中的应用研究进展[J].膜科学与技术,2022,42(02):175-182. [2] Ji Y L, Qian W J, Yu Y W, et al, Recent developments in nanofiltration membranes based on nanomaterials[J], Chinese Journal of Chemical Engineering, 2017,25(11):1639-1652. [3] Tan Z, Chen S, Peng X, et al, Polyamide membranes with nanoscale Turing structures for water purification[J], Science, 2018, 360: 518-521 [4] Singh P S, Ray P, Xie Z, et al, Synchrotron SAXS to probe cross-linked network of polyamide 'reverse osmosis' and 'nanofiltration' membranes[J], Journal of Membrane Science, 2012, 421: 51-59. [5] 环国兰,张宇峰,杜启云,等. 纳滤膜及其应用[J], 天津工业大学学报,2003, 22(01):47-50. [6] Zhao Y L, Zhang Z G, Dai L., et al, Preparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)(2) group[J], Desalination,2018, 431:56-65. [7] Wang K P, Wang X M, Januszewski B, et al, Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships [J], Chemical Society Reviews, 2022, 51(2): 672-719. [8] Wu D, Huang Y, Yu S, D. et al, Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride[J], Journal of Membrane Science, 2014,472:141-153. [9] Xu P, Wang W, Qian X, H. et al, Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J], Desalination, 2019,449:57-68. [10] Wang M, Dong W, Guo Y, et al, Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy[J], Desalination, 2021:114836. [11] B. Jwa, B. Wy, C. Njdg, et al, Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment: Removal of Cu2+ ions[J], Chemical Engineering Journal,2020,392: 123769 [12] Qi Y, Zhu L , Xin Shen,, et al, Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes[J], Separation & Purification Technology,2019:222:117-124. [13] 曹阳, 任玉灵, 郭世伟, 等, 聚酰胺薄层复合膜的界面聚合制备过程调控研究进展[J], 化工进展,2020, 39(06):2125-2134. [14] Wang H, Zhang Q, Zhang S, Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support[J], Journal of Membrane Science, 2011, 378(1-2): 243-249. [15] Wang T, Dai L, Zhang Q, et al, Effects of acyl chloride monomer functionality on the properties of polyamide reverse osmosis (RO) membrane[J], Journal of Membrane Science, 2013,440: 48-57. [16] Cheng X, Lai C, Li J, et al, Toward Enhancing Desalination and Heavy Metal Removal of TFC Nanofiltration Membranes: A Cost-Effective Interface Temperature-Regulated Interfacial Polymerization[J], ACS Applied Materials & Interfaces, 2021, 13(48): 57998-58010. [17] Park SJ, Kwon SJ, Kwon HE, et al, Aromatic solvent-assisted interfacial polymerization to prepare high performance thin film composite reverse osmosis membranes based on hydrophilic supports[J], Polymer,2018,144: 159-167. [18] Liang Y., Zhu Y, Liu C, et al, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation[J], Nature Communications, 2020 11(1): 2015. [19] Peng L E, Yang Z, Long L, et al, A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives [J], Journal of Membrane Science, 2022, 641:119871. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号