Position:Home >> Abstract

Properties of gas separation membranes based on 2,2 '-bisubstituted BPDA-based polyimides
Authors: Mengmeng Yang, Mengru Zhang, Aimin Chen
Units: 1. Zhejiang University of Technology, School of Chemical Engineering, Hangzhou 310014; 2. Laboratory of Polymers and Composites,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
KeyWords: 2,2'-Substitued BPDA, Bulky substituents, Polyimide, Gas separation performance
ClassificationCode:TQ31
year,volume(issue):pagination: 2023,43(2):59-67

Abstract:
 Here, three dianhydrides with different bulky 2,2'-substituents, namely 2,2'-diphenyl-4,4',5,5'-biphenyl-tetracarboxylic phthalic anhydride (PBPDA), 2,2'-bis(2''-trifluoromethylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (O6FPBPDA), 3,3''',5,5'''-tetrafluoromethyl-[1,1':2',1'':2'',1'''-tetraphenyl]-4,4 ',5,5'-tetracarboxylic dianhydride (12FPBPDA), were prepared from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA). A series of intrinsically microporous polyimides were prepared from three these dianhydrides and contorted diamines, namely 2,6-diaminotriptycene (DAT), 3,9-diamino-4, 10-dimethyl-6H,12H-5,11-methylenedibenzo[b,f][1,5]diaza-cine (TBDA2) by one-step polycondensation in m-cresol. The structures of these polymers were characterized by 1H NMR and FT-IR. These polymers exhibited good solubility in a variety of organic solvents. These polymers showed good thermal and mechanical properties, with T5%  of 488-555 oC, Tg of 451-465 oC, tensile strength of 60.5-97.7 MPa, and modulus of 1.56-2.62 GPa. These polymers displayed high gas permeability and moderate gas selectivity, with CO2 permeability being up to 1008 Barrer, O2 permeability being up to 200.5 Barrer, and the specific surface area being up to 567 g/m2. Further, the CO2/CH4 separation performance of O6FPBPDA-DAT approached the 1991 Robeson upper bounds, and the gas separation performance had been further improved after aging. The above results indicate that the introduction of bulky substituents at the 2,2'-position of BPDA can improve the fractional free volume and gas permeability of the resulting polymers.

Funds:
江省自然科学基金项目(LY19B050004)

AuthorIntro:
杨萌萌(1997-),女,河南省周口市,硕士研究生,主要从事聚酰亚胺气体分离膜的研究。E-mial:yangmm@nimte.ac.cn

Reference:
 [1] 黎明, 郦和生, 魏昕, 王玉杰. 氢气分离膜材料的研究现状[J]. 膜科学与技术, 2022, 42(02): 183-189.
[2] Shannon M A , Bonn P W , Elimelech M , et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. 
[3] Bernardo P, Drioli E, Golemme G. Membrane Gas Separation: A review/State of Art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663.
[4] Park C H, Lee C H, Guiver M D, et al. Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)[J]. Progress in Polymer Science, 2011, 36(11): 1443-1498.
[5] Galizia M, Chi W S, Smith Z P, et al. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities[J]. Macromolecules, 2017, 50(20): 7809-7843.
[6] 宗传欣, 丁晓斌, 南江普等. 膜法VOCs气体分离技术研究进展[J]. 膜科学与技术, 2020, 40(01): 284-293.
[7] Robeson L M . The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1-2): 390-400.
[8] 李悦生, 丁孟贤, 徐纪平. 聚酰亚胺气体膜分离材料的结构与性能[J]. 高分子通报, 1998,11 (3): 3-10.
[9] 黄旭, 邵路, 孟令辉, 黄玉东. 聚酰亚胺基气体分离膜的改性方法及其最新进展[J]. 膜科学与技术, 2009, 29(01):101-108.
[10] 刘懿韬, 蔡治礼, 单玲珑, 罗双江. 蝶烯基微孔聚合物气体分离膜的研究进展[J]. 膜科学与技术, 2022, 42(01): 145-154.
[11] 李凯华, 朱芷杨, 程博闻等. 自聚微孔聚合物气体分离膜材料研究进展[J]. 膜科学与技术, 2020, 40(05): 118-128.[11] Ghanem B S, Mckeown N B, Budd P M, et al. High-performance membranes from polyimides with intrinsic microporosity[J]. Advanced Materials, 2008, 20(14): 2766-2771.
[12] Ghanem B S, Alghunaimi F, Wang Y, et al. Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene[J]. ACS Omega, 2018, 3(9): 11874-11882.
[13] Hyung-Sun Kim, Yun-Hi Kim, Seung-Kuk Ahn, and Soon-Ki Kwon*. Synthesis and characterization of highly soluble and oxygen permeable new polyimides bearing a noncoplanar twisted biphenyl unit containing tert-butylphenyl or trimethylsilyl phenyl Groups[J]. Macromolecules, 2003, 36, 2327-2332.
[14] Qiu Z M, Chen G, Zhang Q, et al. Synthesis and gas transport property of polyimide from 2,2'-disubstituted biphenyltetracarboxylic dianhydrides(BPDA)[J]. European Polymer Journal, 2007, 43, 194-204.
[15] Harris F W , Lin S H , Li F , et al. Organo-soluble polyimides: Synthesis and polymerization of 2,2'-disubstituted -4,4',5,5'-biphenyltetracarboxylic dianhydrides[J]. Polymer, 1996, 37(22): 5049-5057.
[16] Wang Z, Wang D, Zhang F, et al. Tröger's Base-Based Microporous Polyimide Membranes for High-performance Gas separation[J]. ACS Macro Letters, 2014, 3(7): 597-601.
[17] Sydlik S A, Chen Z, Swager T M. Triptycene Polyimides: Soluble polymers with high thermal stability and low efractive indices[J]. Macromolecules, 2011, 44(4): 976-980.
[18] Park C Y, Kim E H, Kim J H, et al. Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties[J]. Polymer, 2018, 151, 325-333.
[19] 崔永丽, 张仲华, 江利等. 聚酰亚胺的性能及其应用[J]. 塑料科技, 2005,33(3), 50-54.
[20] Hu x, Mu H, Miao J, et al. Synthesis and gas separation performance of intrinsically microporous polyimides derived from sterically hindered binaphthalenetetracarboxylic dianhydride[J]. Polymer Chemistry, 2020, 11(25): 4172-4179.
[21] Ghanem B S , Alghunaimi F , Wang Y , et al. Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene[J]. ACS Omega, 2018, 3(9): 11874-11882.
[22] Park HB, Jung CH, Lee YM, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848):254-258.
[23] Ahn J, Chung W J, Pinnau I, et al. Polysulfone/silica nanoparticle mixed matrix membranes for gas separation[J]. Journal of Membrane Science, 2008, 314 (1-2): 122-133.
[24] Huang Z, Li Y, Wen R, et al. Enhanced gas separation properties by using nano-structured PES Zeolite 4A mixed matrix membrane[J]. Journal of Applied Polymer Science, 2010 ,101(6): 3800-3805.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号