Position:Home >> Abstract

Preparation and CO2 separation performance of NanoAg/IL/Pebax mixed matrix membranes
Authors: CHANG Xiaohu, LI Peng, GAO Jing, HE Gaohong
Units: 1. Engineering Technology Research Institute, SINOPEC Northwest Company of China Petroleum and Chemical Corporation, Urumqi 830011, China; 2. Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-vuggy Reservoirs, CNPC, Urumqi 830011, China; 3. School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
KeyWords: mixed matrix membranes, ionic liquids, gas separation, CO2
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2023,43(3):15-21

Abstract:
 In order to solve the problem of interfacial compatibility between the polymer matrix and the filler in the mixed matrix membrane, three kinds of ionic liquids with different hydrophilic and hydrophobic properties ([Bmim][Tf2N], [Bmim][BF4] and [Bmim][PF6]) were used as interfacial affinity agents for Pebax matrix and nano-silver particles (NanoAg) to prepare mixed matrix membranes to explore the synergistic mechanism between their effects on the gas separation performance of the membrane. The morphology and degree of dispersion of the mixed matrix membrane was analyzed by scanning electron microscopy; the effect of IL on the mechanical properties and gas separation performance of the mixed matrix membrane was investigated by mechanical tension machine. The results showed that the addition of the [Bmim][BF4] increased the CO2/CH4 selectivity of the mixed matrix membrane to 35.84, which was 58.67% higher than that of the pure Pebax membrane.

Funds:
中国石化科技重大项目“顺北一区采输关键技术研究与应用”(P18022);新疆维吾尔自治区自然科学基金-地州科学基金(2021D01F38)

AuthorIntro:
常小虎(1986-),陕西榆林人,男,本科,副研究员,研究方向油气集输处理与CO2捕集及清洁能源利用

Reference:
 [1] 张臻烨,胡山鹰,金涌.2060中国碳中和—化石能源转向化石资源时代[J].现代化工,2021,41(6):1-5. 
[2] 李飒,林千果,徐冬,等.膜分离-变压吸附协同捕集低浓度烟气二氧化碳工艺模拟研究[J].现代化工,2021,41(9):201-205.
[3] Y. Zheng, S. He, L. Gao, S. Li, Analysis and evaluation of the energy saving potential of the CO2 chemical absorption process, International Journal of Greenhouse Gas Control, 2021, 112:103486.
[4] K. Maqsood, A. Ali, A.B.M. Shariff, S. Ganguly, Process intensification using mixed sequential and integrated hybrid cryogenic distillation network for purification of high CO2 natural gas, Chemical Engineering Research and Design, 2017, 117 :414-438.
[5] H. Wang, W. Zheng, X. Yang, M. Ning, X. Li, Y. Xi, X. Yan, X. Zhang, Y. Dai, H. Liu, G. He, Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation, Separation and Purification Technology, 2021, 274 :119015.
[6] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science,1991, 62:165-185.
[7]杨凯,阮雪华,代岩,王佳铭,贺高红.氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J].化工学报,2020,71(01):329-336.
[8] 张晶晶, 张亚涛. 基于MOFs的混合基质膜在气体分离中的研究进展[J].现代化工,2019,39(08):38-42.
[9] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 2007, 32:483-507.
[10] B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?, Chemical Society Reviews, 2015, 44: 2421-2454.
[11] Z. Guo, W. Zheng, X. Yan, Y. Dai, X. Ruan, X. Yang, X. Li, N. Zhang, G. He, Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes, Journal of Membrane Science, 2020, 605:118101.
[12] Estahbanati E G ,  Omidkhah M ,  Amooghin A E . Interfacial Design of Ternary Mixed Matrix Membranes Containing Pebax 1657/Silver-Nanopowder/[BMIM][BF4] for Improved CO2 Separation Performance[J]. ACS Appl Mater Interfaces, 2017, 9(11):10094-10105.
[13] Y.C. Hudiono, T.K. Carlisle, J.E. Bara, Y. Zhang, D.L. Gin, R.D. Noble, A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, Journal of Membrane Science, 2010, 350:117-123.
[14] Song W ,  Haw J F ,  Nicholas J B , et al. Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34[J]. Journal of the American Chemical Society, 2000, 122(43):10726-10727.
[15] D.F. Sanders, Z.P. Smith, C.P. Ribeiro, R. Guo, J.E. McGrath, D.R. Paul, B.D. Freeman, Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), Journal of Membrane Science, 409-410 (2012) 232-241.
[16]王汉利,阮雪华,代岩,贺高红,单体美,王磊,孟祥青,许国锋.含氟聚酰亚胺的气体渗透性研究[J].膜科学与技术,2018,38(06):34-40.
[17] J. Liu, L. Gao, M. Di, L. Hu, X. Sun, X. Wu, X. Jiang, Y. Dai, X. Yan, G. He, Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane, Journal of Membrane Science, 2022, 644: 120185.
[18] 沈子琦, 汪义雄, 潘俊, 汪朝晖, 崔朝亮, 汪效祖. Matrimid/PPSU共混气体分离膜的制备[J].现代化工,2020,40(07):105-108.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号