Position:Home >> Abstract

Hydrophilic modification of PES membrane with DMA-MPC copolymer and protein anti-fouling study
Authors: YANG Ziyun,CHEN Cong,LIU Qiaohong,LI Yaqian,PENG Yuelian ,AN Quanfu
Units: Beijing University of Technology, Facility of Environmental and Life Science, Beijing, 100124
KeyWords: PES, hydrophilic modification, zwitterionic copolymer, dopamine derivatives, protein anti-fouling
ClassificationCode:TQ 28
year,volume(issue):pagination: 2023,43(4):1-9

Abstract:
Abstract: Adsorption of protein seriously restricts the practical application of polyether sulfone (PES) membrane, and improving the hydrophilicity of membrane surface is an effective method to reduce the phenomenon of membrane fouling. In this study, the surface of a plasma-treated PES membrane was grafted polydopamine methylacrylamide-2-methylacryloxyethyl phosphate choline (DMA-MPC) by one-step deposition, then the hydrophilicity and anti-fouling properties of the modified membrane were investigated. The results showed that plasma treatment increased the number amine reaction sites on PES membrane surface, which react with DMA-MPC and form a stable covalent bond. Under the optimum modification conditions, the water contact angle of PES membrane can be reduced to 37.7±1°, the bovine serum protein (BSA) flux increased to 1060±30 L/(m2⋅h⋅MPa), while maintaining a high rejection rate of BSA at the same time. Moreover, the flux retention rate increased from 47±1% to 73±1%. The modified membrane showed excellent stability in the cycle test, providing a new method to reduce the adsorption of proteins on the PES membrane surface.

Funds:
国家自然科学基金(22125801)

AuthorIntro:
杨紫云(1998-),女,山东烟台人,硕士,研究方向膜分离,E-mail:yzy@emails.bjut.edu.cn

Reference:
 [1] M. Irfan, A. Idris, Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques[J]. Mater. Sci. Eng. C, 2015, 56 574-592.
[2] C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes - A review of methods[J]. Prog. Mater. Sci., 2013, 58(1): 76-150.
[3] 任彦荣, 李志强, 磺化聚醚砜的研究及其应用进展[J]. 2005, 3(2): 23-27.
[4] W. Samtleben, C. Dengler, B. Reinhardt, A. Nothdurft, H.D. Lemke, Comparison of the new polyethersulfone high-flux membrane DIAPES® HF800 with conventional high-flux membranes during on-line haemodiafiltration[J]. Nephrol. Dial. Transplant., 2003, 18(11): 2382-2386.
[5] G.R. Matzke, G.R. Aronoff, A.J. Atkinson, W.M. Bennett, B.S. Decker, K.U. Eckardt, T. Golper, D.W. Grabe, B. Kasiske, F. Keller, J.T. Kielstein, R. Mehta, B.A. Mueller, D.A. Pasko, F. Schaefer, D.A. Sica, L.A. Inker, J.G. Umans, P. Murray, Drug dosing consideration in patients with acute and chronic kidney diseasea clinical update from Kidney Disease: Improving Global Outcomes (KDIGO)[J]. Kidney Int., 2011, 80(11): 1122-1137.
[6] H. Yamasaki, Y. Nagake, H. Makino, Determination of bisphenol A in effluents of hemodialyzers[J]. Nephron, 2001, 88(4): 376-378.
[7] S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293.
[8] S. Krishnan, C.J. Weinman, C.K. Ober, Advances in polymers for anti-biofouling surfaces[J]. J. Mater. Chem., 2008, 18(29): 3405-3413.
[9] M. He, K. Gao, L. Zhou, Z. Jiao, M. Wu, J. Cao, X. You, Z. Cai, Y. Su, Z. Jiang, Zwitterionic materials for antifouling membrane surface construction[J]. Acta Biomater., 2016, 40 142-152.
[10] S. Jiang, Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications[J]. Adv. Mater., 2010, 22(9): 920-932.
[11] Y. Chang, W.-J. Chang, Y.-J. Shih, T.-C. Wei, G.-H. Hsiue, Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization[J]. ACS Appl. Mater. Interfaces, 2011, 3(4): 1228-1237.
[12] A. Venault, W.-Y. Huang, S.-W. Hsiao, A. Chinnathambi, S.A. Alharbi, H. Chen, J. Zheng, Y. Chang, Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes[J]. Langmuir, 2016, 32(16): 4113-4124.
[13] P.-S. Liu, Q. Chen, S.-S. Wu, J. Shen, S.-C. Lin, Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion[J]. J. Membr.Sci., 2010, 350(1-2): 387-394.
[14] H. Meng, Q. Cheng, C. Li, Polyacrylonitrile-based zwitterionic ultrafiltration membrane with improved anti-protein-fouling capacity[J]. Appl. Surf. Sci., 2014, 303 399-405.
[15] S. Huang, Y. Chen, X. Wang, J. Guo, Y. Li, L. Dai, S. Li, S. Zhang, Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s[J]. Chin. J. Chem. Eng., 2022, 49 100-110.
[16] X. Wang, S. Jing, Y. Liu, S. Liu, Y. Tan, Diblock copolymer containing bioinspired borneol and dopamine moieties: Synthesis and antibacterial coating applications[J]. Polymer, 2017, 116 314-323.
[17] B.L. Wang, T.W. Jin, Y.M. Han, C.H. Shen, Q. Li, Q.K. Lin, H. Chen, Bio-inspired terpolymers containing dopamine, cations and MPC: a versatile platform to construct a recycle antibacterial and antifouling surface[J]. J. Mater. Chem. B., 2015, 3(27): 5501-5510.
[18] Z. Qin, J. Zhao, H. Wang, B. Wang, L. Zheng, H. Zhang, Bioinspired Self-Adhesive Lubricating Copolymer with Bacteriostatic and Bactericidal Synergistic Effect for Marine Biofouling Prevention[J]. ACS Appl. Polym. Mater., 2022, 4(3): 2169-2180.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号