Preparation of polyvinyl chloride ultrafiltration membrane by in situ chemical induced phase conversion |
Authors: CHEN Xiaole, SHE Jingguo, GAO Haifu, WANG Xuan, WU Chunrui, LYU Xiaolong |
Units: State Key Laboratory of Separation Membranes and Membrane Process, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China |
KeyWords: polyvinyl chloride, ultrafiltration membrane, N-β-aminoethyl-γ-aminopropyl trimethoxysilane, in situ chemical induction |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2023,43(4):21-27 |
Abstract: |
Aiming at the problems of insufficient hydrophilicity, permeability and selectivity of ultrafiltration membranes, a simple and efficient in situ chemically induced phase conversion method is designed in this paper. In the cast membrane liquid, NH2-containing modifier N- β-aminoethyl-γ-aminopropyl trimethoxysilane(KH792) is added to the C-Cl bond of polyvinyl chloride (PVC), PVC ultrafiltration membrane was prepared. The influence of KH792 content on the structure and properties of PVC membrane was investigated. The results showed that as the content of KH792 increased from 0% to 12%, the average aperture of PVC film increased from 56.84 nm to 86.33 nm, and more homogeneous pore size distribution compared to the original membrane; porosity increased from 62% to 88%; initial contact angle decreased from 87.5° to 70.68°, dynamic contact angle drop range increased from 8° to 20° within 120s; while the bovine serum albumin (BSA) interception rate was guaranteed to be around 95%, the flux of pure water was increased from 46 L·m-2·h-1 increased to 539 L·m-2·h-1. |
Funds: |
国家自然科学面上基金项目(51978466,52170047) |
AuthorIntro: |
陈小乐(1997-),女,山西省大同人,硕士研究生,研究方向为分离膜制备与应用;E-mail:1358470640@qq.com |
Reference: |
[1]Fane A G, Wang R, Hu M.X. Synthetic membranes for water purification: status and future[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3368-3386. [2]Kaner P, Rubakh E, Kim D H, Asatekin A, et al. Zwitterion-containing polymer additives for fouling resistant ultrafiltration membranes[J]. Journal of Membrane Science, 2017, 533: 141-159. [3]黄凯楠, 吉学智, 王飞, 等. 超滤膜技术概述[J]. 化工进展, 2021, 40(S2): 219-225. [4]马超,黄海涛,顾计友,刘旸.高分子分离膜材料及其研究进展[J].材料导报, 2016, 30(09): 144-150+157. [5]Safarpour M, Safikhani A, Vatanpour V. Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives[J]. Separation and Purification Technology, 2021, 279: 119678. [6]Ahmad T, Guria C. Progress in the modification of polyvinyl chloride (PVC) membranes: A performance review for wastewater treatment[J]. Journal of Water Process Engineering, 2022, 45: 102466. [7]Khakpour S, Jafarzadeh Y, Yegani R. Incorporation of graphene oxide/nanodiamond nanocomposite into PVC ultrafiltration membranes[J]. Chemical Engineering Research and Design, 2019, 152: 60-70. [8]汤 超, 刘四华, 张仁伟,等. 改性CNC对聚氯乙烯超滤膜性能的影响[J]. 膜科学与技术, 2020, 40(05): 9-15+22. [9]Mishra G, Mukhopadhyay M. Enhanced antifouling performance of halloysite nanotubes (HNTs) blended poly(vinyl chloride) (PVC/HNTs) ultrafiltration membranes: For water treatment, Journal of Industrial and Engineering Chemistry, 2018, 63: 366-379. [10]M.M. Aji, S. Narendren, M.K. Purkait, V. Katiyar, Utilization of waste polyvinyl chloride (PVC) for ultrafiltration membrane fabrication and its characterization, Journal of Environmental Chemical Engineering, 2020, 8: 103650. [11]A. Bhran, A. Shoaib, D. Elsadeq, A. El-gendi, H. Abdallah, Preparation of PVC/PVP composite polymer membranes via phase inversion process for water treatment purposes, Chinese Journal of Chemical Engineering, 2018, 26: 715-722. [12]H. Wu, T. Li, B. Liu, C. Chen, S. Wang, J.C. Crittenden, Blended PVC/PVC-g-PEGMA ultrafiltration membranes with enhanced performance and antifouling properties, Applied Surface Science, 2018, 455: 987-996. [13]Fan X, Su Y, Zhao X, et al. Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal[J]. Journal of Membrane Science, 2014, 464: 100-109. [14]Han Z, Cheng C, Zhang L, et al. Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization[J]. Desalination, 2014, 349: 80-93. [15]Zhu L, Song H, Zhang D, et al. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization[J]. Journal of Colloid and Interface Science, 2017, 498: 136-143. [16]Chen R, Mao L, Matindi CN, et al. Tailoring the micro-structure of PVC/SMA-g-PEG blend ultrafiltration membrane with simultaneously enhanced hydrophilicity and toughness by in situ reaction-controlled phase inversion[J]. Journal of Membrane Science, 2022, 653: 120545. [17]滕谋勇, 张文东, 姜传飞,等. 硅烷交联PVC的制备及性能[J]. 塑料助剂, 2008(06):34-38. [18]李兰军. 硅氧烷交联聚氯乙烯的研究[D]. 四川: 四川大学, 2007. [19]Liu S, Tang C, She J, et al. Poly(ionic liquid) copolymer blended polyvinyl chloride ultrafiltration membranes with simultaneously improved persistent hydrophilicity and pore uniformity[J]. Separation and Purification Technology, 2022, 295: 121270. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号