Effect of annealing pretreatment on the structure and properties of carbon molecular sieve hollow fiber membranes |
Authors: ZHANG Xianglong, SHENG Lujie, LI Hui, XU Changyang, REN Jizhong |
Units: 1. National Laboratory of Clean Energy, Dalian Institute of Chemical Physics, Dalian 116023, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. National Engineering Research Center of Membrane Technology, Dalian 116023, China |
KeyWords: Carbon membranes have excellent thermal stability, chemical stability and gas separation performance. In this study, polyimide hollow fiber membranes were used as precursors to prepare high performance carbon molecular sieve hollow fiber membranes by annealing pretreatment (250°C, 300°C and 350°C) near the Tg. The effects of annealing conditions on the structure and gas separation performance of polyimide-based carbon membranes were investigated. The results showed that the structure of carbon molecular sieve hollow fiber membranes became denser with the annealing temperature increasement, while the selectivity of CO2/CH4 and H2/CH4 increased and the permeability decreased. Especially when the annealing temperature was 350℃, the selectivity of CO2/CH4 and H2/CH4 increased by 98% and 195%, respectively. Simultaneously, the effect of permeation temperature and pressure on gas separation performance was studied. HIM (Helium ion electron microscope), FTIR and XRD were used to characterize the morphology of carbon membranes prepared under different pretreatment conditions. |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2023,43(4):110-117 |
Abstract: |
s to prepare high performance carbon molecular sieve hollow fiber membranes by annealing pretreatment (250°C, 300°C and 350°C) near the Tg. The effects of annealing conditions on the structure and gas separation performance of polyimide-based carbon membranes were investigated. The results showed that the structure of carbon molecular sieve hollow fiber membranes became denser with the annealing temperature increasement, while the selectivity of CO2/CH4 and H2/CH4 increased and the permeability decreased. Especially when the annealing temperature was 350℃, the selectivity of CO2/CH4 and H2/CH4 increased by 98% and 195%, respectively. Simultaneously, the effect of permeation temperature and pressure on gas separation performance was studied. HIM (Helium ion electron microscope), FTIR and XRD were used to characterize the morphology of carbon membranes prepared under different pretreatment conditions. |
Funds: |
国家重点研发计划(2020YFC0862900) |
AuthorIntro: |
张相龙(1993-),山东高密人,硕士研究生,主要从事聚酰亚胺基炭膜的气体分离研究 |
Reference: |
[1] 田原宇, 谢克昌, 乔英云. 碳中和约束下的煤化工产业展望[J]. 中外能源, 2022, 27(05):17-23. [2] 邹雪娜, 褚立强, 徐徜徉. CO2/CH4分离膜技术在沼气提纯中的应用研究进展[J]. 膜科学与技术, 2014, 34(05):125-132. [3] 韩坤鹏, 耿新国, 刘铁斌. 炼厂低浓度氢气回收利用的技术现状及进展[J]. 当代化工, 2020, 49(3):665-669,682. [4] 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(08):3417-3432. [5] Farnam M, bin Mukhtar H, bin Mohd Shariff A. Highly permeable and selective polymeric blend mixed matrix membranes for CO2/CH4 separation[J]. Chemical Papers, 2021, 75(11):5663-5685. [6] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2):165-185. [7] Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1):390-400. [8] 李琳, 祁文博, 王虹,等. 聚酰亚胺的化学结构在炭膜制备过程中的变化规律及热解机理[J]. 新型炭材料, 2015, 30(05):459-465. [9] 宋晶, 李琳, 鲁云华,等. CO2捕集炭膜的前驱体结构设计及性能[J]. 高等学校化学学报, 2017, 38(10):1850-1856. [10] Salleh W N W, Ismail A F, Matsuura T, et al. Precursor Selection and Process Conditions in the Preparation of Carbon Membrane for Gas Separation: A Review[J]. Separation & Purification Reviews, 2011, 40(4):261-311. [11] 张兵, 王同华, 张守海,等. 前驱体化学结构对炭膜气体分离性能的影响 [M]. 北京. 2005. [12] 祁文博, 王同华, 李琳,等. BDAF-PMDA型聚酰亚胺炭膜的制备及其气体分离性能的研究[J]. 膜科学与技术, 2012, 32(03):6-10. [13] 李琳, 王同华, 曹义鸣,等. 气体分离炭膜的结构设计、制备及功能化[J]. 无机材料学报, 2010, 25(05):449-456. [14] 闫健娜, 高会元, 朱国颖,等. 炭分子筛膜的制备及应用研究进展[J]. 化工新型材料, 2011, 39(08):33-35. [15] 张兵, 王同华, 呼立红,等. 聚酰亚胺基气体分离炭膜的进展[J]. 膜科学与技术, 2007, (05):97-101. [16] Yang R, Chen M Y, Li P. Carbon molecular sieve hollow fiber composite membrane derived from PMDA-ODA polyimide for gas separation[J]. High Performance Polymers, 2022, 34(4):444-454. [17] Bhuwania N, Labreche Y, Achoundong C S K, et al. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes[J]. Carbon, 2014, 76:417-434. [18] Sazali N, Salleh W N W, Ismail A F, et al. Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H2/N2 and He/N2 separations[J]. IOP Conference Series: Materials Science and Engineering, 2018, 342(1):012027. [19] 王同华, 呼立红, 刘庆岭,等. 预氧化处理对聚醚酰亚胺基炭膜结构与气体分离性能的影响[J]. 新型炭材料, 2008, (03):264-268. [20] Sheng L J, Ren J Z, Zhao D, et al. The evolution of the structure, mechanical, and gas separation properties of P84 hollow fiber membranes from the polymer to the carbon stage[J]. Sep Purif Technol, 2021, 256:7. [21] Ning X, Koros W J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation[J]. Carbon, 2014, 66:511-522. [22] Zhang B, Yang C, Liu S, et al. The positive/negative effects of bentonite on O2/N2 permeation of carbon molecular sieving membranes[J]. Microporous Mesoporous Mat, 2019, 285:142-149. [23] Fu S, Wenz G B, Sanders E S, et al. Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA(3:2) derived carbon molecular sieve membranes[J]. Journal of Membrane Science, 2016, 520:699-711. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号