Preparation and performance study of asymmetric dual-layer polyamide nanofiltration membranes by one-step free interfacial polymerization |
Authors: FU Xinyu, WANG Jianqiang, JI Yanli, LIU Fu |
Units: 1. Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou?310014,?China; 2. Ningbo?Institute?of?Materials?Technology?&?Engineering,?Chinese?Academy?of?Sciences, Ningbo?315201,?China; 3.University?of?Chinese?Academy?of?Sciences,?Beijing?100049,?China |
KeyWords: asymmetric polyamide; dual-layer polyamide; interfacial polymerization; nanofiltration |
ClassificationCode:O63 |
year,volume(issue):pagination: 2023,43(5):50-57 |
Abstract: |
Thin film composite (TFC) nanofiltration membranes are widely used in the field of water treatment as a new membrane separation technology. Reducing the thickness of the polyamide separation layer is beneficial for enhancing the permeability of TFC nanofiltration membranes. However, the practical application of TFC nanofiltration membranes with an ultra-thin polyamide layer still faces great challenges. Here, we propose a strategy for the preparation of asymmetric dual-layer polyamide nanofiltration membranes by one-step free interfacial polymerization. The resulting asymmetric dual-layer polyamide nanofiltration membranes have a thin, smooth and dense top polyamide separation layer, while the corresponding bottom polyamide separation layer is relatively thick, rough and sparse. The thin and dense top polyamide layer results in a relatively high water permeability (18.5±1.0 L m-2 h-1 bar-1) and high retention (Na2SO4, 97.2±0.8%), while the thicker and looser bottom polyamide layer results in a long-term operational stability. This study provides a promising preparation strategy for improving the separation performance of polyamide composite membranes. |
Funds: |
宁波市自然科学基金重点项目(202003N4031);中科院国际伙伴计划—全球共性挑战专项(181GJHZ2022038GC) |
AuthorIntro: |
付欣宇(1995-),女,山西朔州,硕士,从事纳滤膜及其性能研究,E-mail:fuxinyu@nimte.ac.cn. |
Reference: |
[1] Elimelech M, Phillip W A. The Future of Seawater Desalination: Energy, Technology, and the Environment[J]. Science, 2011, 333(6043): 712-717. [2] Yang Z, Ma X H, Tang C Y. Recent development of novel membranes for desalination[J]. Desalination, 2018, 434: 37-59. [3] Shao S, Zeng F, Long L, et al. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications[J]. Environmental Science & Technology, 2022, 56(18): 12811-12827. [4] Zhu Y, Xie W, Gao S, et al. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination[J]. Small, 2016, 12(36): 5034-5041. [5] Karan S, Jiang Z, Livingston A G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348: 1347-1351. [6] Li Y, Su Y, Li J, et al. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine[J]. Journal of Membrane Science, 2015, 476: 10-19. [7] Yang Z, Zhou Z, Guo H, et al. Tannic Acid/Fe 3+ Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance[J]. Environmental Science & Technology, 2018, 52(16): 9341-9349. [8] 程荣, 姜培文, 夏锦程,等. 共价有机骨架材料在膜分离领域的应用进展[J]. 膜科学与技术, 2022, 42(5):154-163. [9] 张逸娟, 宋春风, 连少翰,等. 功能化MOF基混合基质膜微环境调控策略[J]. 膜科学与技术, 2023, 43(1):165-173. [10] Jiang Z, Karan S, Livingston A G. Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis[J]. Advanced Materials, 2018, 30(15): 1705973. [11] Zhu J, Hou J, Zhang R, et al. Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration[J]. Journal of Materials Chemistry A, 2018, 6(32): 15701-15709. [12] Peng L E, Yao Z, Yang Z, et al. Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing[J]. Environmental Science & Technology, 2020, 54(11): 6978-6986. [13] Chowdhury M R, Steffes J, Huey B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682-686. [14] Zhang L, Liu F, Yang S, et al. Air nanobubbles (ANBs) incorporated sandwich-structured carbon nanotube membranes (CNM) for highly permeable and stable forward osmosis[J]. Advanced Membranes, 2022, 2: 100026. [15] Lim Y J, Goh K, Lai G S, et al. Unraveling the role of support membrane chemistry and pore properties on the formation of thin-film composite polyamide membranes[J]. Journal of Membrane Science, 2021, 640: 119805. [16] Ma X H, Yao Z K, Yang Z, et al. Elimelech M. Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2): 123-130. [17] Shen L, Cheng R, Yi M, et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving[J]. Nature Communications, 2022, 13(1): 500. [18] Yuan B, Zhao S, Hu P, et al. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification[J]. Nature Communications, 2020, 11(1): 6102. [19] Schaep J, Van der Bruggen B, Vandecasteele C, et al. Influence of ion size and charge in nanofiltration[J]. Separation and Purification Technology, 1998, 14(1-3): 155-162. [20] Fang W, Shi L, Wang R. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability[J]. Journal of Membrane Science, 2014, 468: 52-61. [21] Schaep J, Van der Bruggen B, Vandecasteele C, et al. Influence of ion size and charge in nanofiltration[J]. Separation and Purification Technology, 1998, 14(1-3): 155-162. [22] Tang H, He J, Hao L, et al. Developing nanofiltration membrane based on microporous poly(tetrafluoroethylene) substrates by bi-stretching process[J]. Journal of Membrane Science, 2017, 524: 612-622. [23] Zhang X, Lv Y, Yang H C, et al. Polyphenol Coating as an Interlayer for Thin-Film Composite Membranes with Enhanced Nanofiltration Performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32512-32519. [24] Zheng J, Li M, Yu K, et al. Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property[J]. Journal of Membrane Science, 2017, 524: 344-353. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号