Structure control of the polyetherimide porous membrane and its acoustical metamaterial sound absorption and the sound insulation properties |
Authors: GU Kai, ZHU Yingwen, YIN Ahen, SHE Xiaojun, WANG Kun, CUI Bo, ZHU Mengfu |
Units: 1. College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; 2. Institute of Environmental Medicine and Occupational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China; 3. Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin 300161, China |
KeyWords: polyetherimide; porous membrane; structure control; acoustic metamaterial; sound absorption; sound insulation |
ClassificationCode:TQ028;O422.4;TB535 |
year,volume(issue):pagination: 2023,43(5):65-73 |
Abstract: |
The polyetherimide (PEI) porous membrane was prepared by phase inversion process using PEI as the membrane material and N-methylpyrrolidone (NMP) as the solvent, in which the PEI porous membrane acoustic metamaterial was further constructed. The effects of PEI concentration, scraping thickness, and coagulation bath composition on the thickness, density, morphology, and tensile strength of the PEI porous membrane, as well as the sound absorption properties and sound insulation properties of the porous membrane acoustic metamaterial in the low-frequency range were investigated. The results showed that increasing the PEI concentration inhibited the formation of finger-like pore structures and increased the density of the PEI porous membrane. By increasing the membrane density, the average absorption coefficient of the porous membrane acoustic metamaterial decreased from 0.075 to 0.040, and the average sound transmission loss increased from 4.126 dB to 6.263 dB. Increasing the scraping thickness decreased the number of finger-like pores and increased the thickness of the PEI porous membrane. The average absorption coefficient of the porous membrane acoustic metamaterial decreased from 0.113 to 0.043, and the average sound transmission loss increased from 3.149 dB to 8.317 dB. The addition of NMP to the coagulation bath promoted the formation of sponge-like pore structures in the PEI porous membrane. The PEI porous membrane was basically a fully sponge-like structure with the NMP concentration of 80% (v/v). Increasing the NMP concentration increased the density and decreased the thickness of the PEI membrane. Due to the opposite effect of density and thickness, the effect of coagulation bath composition on the sound absorption properties and sound insulation properties of the porous membrane acoustic metamaterial was not obvious in the experimental frequency range. |
Funds: |
自主科研项目(2021ZZKY04) |
AuthorIntro: |
顾凯(1997-),男,安徽六安人,硕士生,主要从事膜材料制备及其声学性能研究,E-mail:861034219@qq.com. |
Reference: |
[1] 盖志辉, 崔博, 佘晓俊, 等. 基于NES-C4的噪声环境作业人员视觉相关作业工效的研究[J]. 解放军预防医学杂志, 2017, 35(9):1028-1030,1040. [2] 赵松龄. 噪声的降低与隔离(下册)[M]// 上海: 同济大学出版社, 1989:5-6. [3] Ding Y, Liu Z, Qiu C, et al. Metamaterial with simultaneously negative bulk modulus and mass density [J]. Phys Rev Lett, 2007, 99(9):093904. [4] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021, 40(20):150-157. [5] Yang Z, Mei J, Yang M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Phys Rev Lett, 2008, 101,204301. [6] Yang Z, Dai H, Chan N, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Appl Phys Lett, 2010, 96:041906. [7] Naify C J, Chang C M, Mcknight G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials [J]. J Appl Phys, 2010, 108 (11):114905. [8] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带吸声性能研究[J]. 应用声学, 2019, 38(5):869-875. [9] 温激鸿. 声学超材料基础理论与应用[M]// 北京: 科学出版社, 2019:224-234. [10] Ma F, Wu J, Huang M. One-dimensional rigid film acoustic metamaterials[J]. J Phys D: Appl Phys, 2015, 48(46):465305. [11] Li Y, Zhang Y, Xie S. A lightweight multilayer honeycomb membrane-type acoustic metamaterial[J]. Appl Acoust, 2020, 168:107427. [12] Wang S, Zhang X, Li F, et al. Sound transmission loss of a novel acoustic metamaterial sandwich panel: Theory and experiment[J]. Appl Acoust, 2022, 199:109035. [13] Chen Y, Huang G, Zhou X, et al. Analytical coupled vi-broacoustic modeling of membrane-type acoustic metama-terials: plate model[J]. J Acoust Soc of Am, 2014,136(3):2926. [14] 陈斌, 黄修长. 周期结构振动控制研究现状[J]. 噪声与振动控制, 2011, 31(5):37-41. [15] 段翠佳, 曹义鸣, 陈赞. ZIF-8对Ultem®1000中空纤维气体分离膜性能影响研究[J]. 膜科学与技术, 2020, 40(03):88-94. [16] 侯影飞, 王金凤, 刘敏. PVA/PEI复合纳滤膜的制备及性能优化[J]. 膜科学与技术, 2016, 36(06):53-60. [17] 徐红梅, 魏俊富, 王晓磊, 等. 中空纤维超滤膜干燥过程中膜孔演变规律研究[J]. 天津工业大学学报, 2014, 33(03):7-11. [18] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12):35-41. [19] Jang J Y, Park C S, Song K. Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation[J]. Mech Syst Sign Process, 2022, 178:109270. [20] 王贡献, 史蒙飞, 向磊, 等. 带背腔薄膜型声学超材料低频隔声特性分析[J]. 噪声与振动控制, 2023, 43(1):1-6. [21] 李树轩, 黄良伟, 苏保卫, 等. 交联聚酰亚胺耐溶剂超滤膜的制备及性能研究[J]. 膜科学与技术, 2018, 38(05):47-54. [22] Hussain A, Mehmood A, Saleem A, et al. Polyetherimide membrane with tunable porous morphology for safe lithium metal-based batteries[J]. Chem Eng J, 2023, 453:139804. [23] 欧阳果仔, 李新冬, 张鑫, 等. 聚醚酰亚胺耐溶剂超滤膜的制备及性能研究[J]. 材料工程, 2022, 50(08):160-168. [24] 丁成成, 孔伟, 杨帅, 等. 聚酰亚胺不对称多孔膜的制备及表征[J]. 南京工业大学学报(自然科学版), 2020, 42(02):187-194. [25] Xu X, Wang X, Mei Y. A design method for absorption of low-frequency noise using acoustic metamaterials[C]// IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 569(3):032040. [26] 储健, 王丽华, 虞鑫海. 新型聚芳醚砜锂离子电池隔膜的制备及性能[J]. 膜科学与技术, 2021, 41(06): 75-84. [27] 项军, 胡肖丽, 唐娜, 等. 基于NIPS法聚苯砜超滤膜海绵状孔结构的微观调控[J]. 膜科学与技术, 2019, 39(06):71-79. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号