Position:Home >> Abstract

Construction and gas separation performance of MXene/rGO hollow fiber composite membranes
Authors: BAO Huanzhong, QIAO Junhao, WANG Qinsheng, WANG Yuming, CAO Guoqiang, YU Qinghua, LI Song, ZHANG Lianbao, JIN Yun
Units: 1. Zibo Megavision Membrane Environmental Protection Technology Co., LTD., Zibo 255400, China; 2. School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; 3. Shandong Meiling Zhonglian Environmental Engineering Co., Ltd., Zibo 255400, China
KeyWords: MXene/rGO; Membrane separation; Inter-spacing; Gas separation; Permeability
ClassificationCode:TQ028.2+1
year,volume(issue):pagination: 2023,43(5):118-126

Abstract:
  MXene/rGO composite membranes were prepared through rGO modified by polyallyl dimethyl ammonium chloride (PDDA) inserted into the MXene nano-sheet with negative charge to inhibit the self-stacking of MXene. Scanning electron microscopy (SEM) was used to analyze the surface morphology of MXene/rGO composite membranes. X-ray diffraction (XRD) and X-ray diffraction photoelectron spectroscopy (XPS) were used to analyze the layer spacing, chemical crystal pattern and valence state of elements. The results show that MXene/rGO can achieve inter-spacing of 3.15 Å through intercalating regulation. Moreover, MXene/rGO composite hollow fiber membranes show excellent H2 permeability of 5.13×10-8 mol/(m2·s·Pa), H2/CO2 selectivity of 125 at 25 oC, and excellent stability over 200 h.

Funds:
国家自然科学基金(21878179);山东省重大科技创新工程项目(2019JZZY020224)

AuthorIntro:
包焕忠(1970-),男,吉林省梅河口市人,高级工程师,学士,研究方向为分离膜的研发、应用和制备,E-mail:bhz@mayling.com.cn

Reference:
 [1] Edwards P P, Kuznetsov V L, David W I F, et al. Hydrogen and fuel cells: towards a sustainable energy future[J]. Energ Policy, 2008, 36(12): 4356-4362.
[2] Vogt C, Monai M, Kramer G J, et al. The renaissance of the Sabatier reaction and its applications on Earth and in space[J]. Nat Catal, 2019, 2(3): 188-197.
[3] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
[4] Ross J R H. Natural gas reforming and CO2 mitigation[J]. Catal Today, 2005, 100(1-2): 151-158.
[5] Jee J G, Kim M B, Lee C H. Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve[J]. Chem Eng Sci, 2005, 60(3): 869-882.
[6] Wang J, Zhu J, Zhang Y, et al. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation[J]. Nanoscale, 2017, 9(9): 2942-2957.
[7] Ockwig N W, Nenoff T M. Membranes for hydrogen separation[J]. Chem Rev, 2007, 107(10): 4078-4110.
[8] Sholl D S, Lively P P. Seven chemical separations to change the world[J]. Nature, 2016,532(435):435-437.
[9]丁黎明,郦和生,魏昕,等. 氢气分离膜材料的研究现状[J]. 膜科学与技术,2022,42(02):183-189.
[10] Yampolskii Y, Belov N, Alentiev A. Perfluorinated polymers as materials of membranes for gas and vapor separation[J]. J Membr Sci, 2020, 598: 117779.
[11] Robeson L M. The upper bound revisited[J]. J Membr Sci, 2008, 320(1-2): 390-400.
[12]高蔓彤,王升欢,刘继桥,等. 基膜表面孔隙率对聚酰胺复合纳滤膜性能的影响[J]. 膜科学与技术, 2022, 42(05):64-78.
[13] Liu J, Ju X, Tang C, et al. High performance stainless-steel supported Pd membranes with a finger-like and gap structure and its application in NH3 decomposition membrane reactor[J]. Chem Eng J, 2020, 388: 124245.
[14] Maneerung T, Hidajat K, Kawi S. Ultra-thin (< 1 μm) internally-coated Pd-Ag alloy hollow fiber membrane with superior thermal stability and durability for high temperature H2 separation[J]. J Membr Sci, 2014, 452: 127-142.
[15] Meng X, Song J, Yang N, et al. Ni-BaCe0.95Tb0.05O3−δ cermet membranes for hydrogen permeation [J]. J Membr Sci, 2012, 401: 300-305.
[16] Zhang S, Wang S, Jin Y, et al. One stone two birds: Simultaneous realization of partial oxidation of methane to syngas and N2 purification via robust ceramic oxygen-permeable membrane reactors[J]. Chem Eng J, 2021, 419: 129462.
[17] Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359.
[18] Duke M C, Da Costa J C D, Do D D, et al. Hydrothermally robust molecular sieve silica for wet gas separation[J]. Adv Funct Mater, 2006, 16(9): 1215-1220.
[19] Liu P, Wu M, Li L, et al. Ideal two-dimensional molecular sieves for gas separation: Metal trihalides MX3 with precise atomic pores[J]. J Membr Sci, 2020, 602: 117786.
[20] Elyassi B, Sahimi M, Tsotsis T T. Silicon carbide membranes for gas separation applications[J]. J Membr Sci, 2007, 288(1-2): 290-297.
[21] Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754.
[22] Guo A, Ban Y, Yang K, et al. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation[J]. J Membr Sci, 2018, 562: 76-84.
[23] Xu G, Yao J, Wang K, et al. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel[J]. J Membr Sci, 2011, 385: 187-193.
[24] Hamid M R A, Qian Y, Wei R, et al. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges[J]. J Membr Sci, 2021, 640: 119802.
[24] Zhou S, Wei Y, Zhuang L, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates[J]. J Mater Chem A, 2017, 5(5): 1948-1951.
[26] Hung T H, Deng X, Lyu Q, et al. Coulombic effect on permeation of CO2 in metal-organic framework membranes[J]. J Membr Sci, 2021, 639: 119742.
[27] Li W, Zhang Y, Su P, et al. Metal–organic framework channelled graphene composite membranes for H2/CO2 separation[J]. J Mater Chem A, 2016, 4(48): 18747-18752.
[28] Zhou S, Wei Y, Hou J, et al. Self-sacrificial template strategy coupled with smart in situ seeding for highly oriented metal–organic framework layers: from films to membranes[J]. Chem Mater, 2017, 29(17): 7103-7107.
[29] Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958, 208:1334-1339.
[30] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two‐dimensional materials[J]. Adv Mater, 2014, 26(7): 992-1005.
[31] Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat Commun, 2018, 9(1):1-7.
[32] Shen J, Liu G, Ji Y, et al. 2D MXene nanofilms with tunable gas transport channels[J]. Adv Funct Mater, 2018, 28(31): 1801511.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号