Research Progress on High-Temperature Modification of Nafion Membrane |
Authors: XU Guoxiao,WU Junli,LI Jing,CAI Weiwei |
Units: 1. School of Electronic Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China;2. Faculty of Materials Science and Chemistry,China University of Geosciences,Wuhan 430074, China |
KeyWords: Nafion membrane; high-temperature modification materials; fuel cell; modification strategy; proton conductivity |
ClassificationCode:TM911.47 |
year,volume(issue):pagination: 2023,43(6):180-190 |
Abstract: |
Nafion membrane is the most mature commercial membrane material used in proton exchange membrane fuel cell (PEMFC) due to its excellent comprehensive performance under low and medium temperature conditions. However, when the operating temperature of the fuel cell exceeds 100°C, the proton conductivity of Nafion membrane rapidly decreases due to evaporation of water loss, and the volume change caused by water loss also adversely affects its mechanical stability. On the other hand, the increase in operating temperature of the fuel cell can not only improve the kinetics of electrode-related reactions, but also effectively enhance the catalytic resistance to side-product gases such as carbon monoxide and hydrogen sulfide. Therefore, the improvement of the comprehensive performance of Nafion membrane under high-temperature and low-humidity conditions will further promote the high-temperature practical application process of PEMFC technology. In this article, the relevant research on high-temperature modification of Nafion membrane in recent years is summarized and analyzed, focusing on modification materials and modification strategies. |
Funds: |
国家自然科学基金项目(22179121);广西自然科学基金项目(2023GXNSFBA026319);广西高校中青年教师科研基础能力提升项目(2022KY0327) |
AuthorIntro: |
徐国效(1991-),男,山东淄博人,主要研究方向为膜材料制备与改性 |
Reference: |
[1] Yang F, Elnabawy A O, Schimmenti R, et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction[J]. Nat Commun, 2020, 11(1): 1088. [2] Liu S, Yuan S, Liang Y, et al. Engineering the catalyst layers towards enhanced local oxygen transport of Low-Pt proton exchange membrane fuel cells: Materials, designs, and methods[J]. International Journal of Hydrogen Energy, 2023, 48(11): 4389-4417. [3] 谢玉洁, 张博鑫, 徐迪,等. 燃料电池用新型复合质子交换膜研究进展[J]. 膜科学与技术, 2021, 41(4): 177-186. [4] Fan L, Tu Z, Chan S, et al. Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: Theory, integration and prospective[J]. International Journal of Hydrogen Energy, 2023, 48(21): 7828-7865. [5] 张永明, 唐军柯, 袁望章,等. 燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011, 31(3): 76-85. [6] Xu G, Dong X, Xue B, et al. Recent approaches to achieve high temperature operation of Nafion membranes [J]. Energies, 2023, 16(4): 1565. [7] Wong C Y, Wong W Y, Ramya K, et al. Additives in proton exchange membranes for low-and high-temperature fuel cell applications: A review[J]. International journal of hydrogen energy, 2019, 44(12): 6116-6135. [8] Haubold H G, Vad T, Jungbluth H, et al. Nano structure of NAFION: A SAXS study [J]. Electrochimica Acta, 2001, 46(10):1559-1563. [9] Matos B R, Santiago E I, Rey J F Q, et al. dc-Proton conductivity at low-frequency in Nafion conductivity spectrum probed by time-resolved SAXS measurements and impedance spectroscopy [J]. Journal of Polymer Science Part B: Polymer Physics, 2015, 53(11): 822-828. [10] Wang R, Yan X, Wu X, et al. Modification of hydrophilic channels in nafion membranes by DMBA: Mechanism and effects on proton conductivity [J]. Journal of Polymer Science Part B Polymer Physics, 2014, 52(16): 1107-1117. [11] Wu L, Zhang Z, Ran J, et al. Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs) [J]. Phys Chem Phys, 2013, 15:4870. [12] Wang R, Liu S, Wang L, et al. Understanding of nanophase separation and hydrophilic morphology in Nafion and SPEEK membranes: A combined experimental and theoretical studies[J]. Nanomaterials, 2019, 9(6): 869. [13] Yang X, Wang R, Shi L, et al. Performance improvement of PVDF hollow fiber-based membrane distillation process[J]. J Membr Sci, 2011, 369(1/2): 437-447. [14] Ke C, Li X J, Qu S G, et al. Preparation and properties of Nafion/SiO2 composite membrane derived via in situ sol-gel reaction: size controlling and size effects of SiO2 nano-particles[J]. Polymers for Advanced Technologies, 2012, 23(1): 92-98. [15] Santiago E I, Isidoro R A, Dresch M A, et al. Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature[J]. Electrochimica Acta, 2009, 54(16): 4111-4117. [16] Wang H, Li X, Zhuang X, et al. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 340: 201-209. [17] Xu G, Zou J, Guo Z, et al. Bi-functional composting the sulfonic acid based proton exchange membrane for high temperature fuel cell application[J]. Polymers (Basel), 2020, 12(5): 125-129 [18] Ko E H, Yoon Y, Park J H, et al. Bioinspired, cytocompatible mineralization of silica–titania composites: thermoprotective nanoshell formation for individual Chlorella cells[J]. Angewandte Chemie, 2013, 125(47): 12505-12508. [19] López G P, López R, Viveros T. Dehydrocyclization of n-heptane over Pt catalysts supported on Al-and Si-promoted TiO2[J]. Catalysis Today, 2014, 220: 61-65. [20] Byrne H E, Mazyck D W. Removal of trace level aqueous mercury by adsorption and photocatalysis on silica–titania composites[J]. Journal of Hazardous Materials, 2009, 170(2/3): 915-919. [21] Li W, Zhao D. Extension of the Stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core–shell structures[J]. Advanced Materials, 2013, 25(1). [22] Sayeed M D, Kim H J, Park Y, et al. Sulfated titania–silica reinforced Nafion® nanocomposite membranes for proton exchange membrane fuel cells[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(9): 7054-7059. [23] Yin Y, Liu Y, Wu H, et al. One-pot synthesis of silica–titania binary nanoparticles with acid–base pairs via biomimetic mineralization to fabricate highly proton-conductive membranes[J]. Journal of Materials Chemistry A, 2017, 5(35): 18585-18593. [24] Cavani F. Heteropolycompound-based catalysts:: A blend of acid and oxidizing properties[J]. Catalysis Today, 1998, 41(1-3): 73-86. [25] Abouzari-Lotf E, Nasef M, Ghassemi H, et al. Improved methanol barrier property of Nafion hybrid membrane by incorporating nanofibrous interlayer self-immobilized with high level of phosphotungstic acid[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17008-17015. [26] Shao Z G, Joghee P, Hsing I M. Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells[J]. J Membr Sci 2004, 229(1-2): 43-51. [27] Xu G X, Xue S J, Wei Z L, et al. Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell applications[J]. International Journal of Hydrogen Energy, 2021, 5 (46): 4301-4308. [28] Yang X B, Meng L H, Sui X L, et al. High proton conductivity polybenzimidazole proton exchange membrane based on phosphotungstic acid-anchored nano-Kevlar fibers[J]. Journal of Materials Science, 2019, 54(2): 1640-1653. [29] Yang X B, Zhao L, Sui X L, et al. Phosphotungstic acid immobilized nanofibers-Nafion composite membrane with low vanadium permeability and high selectivity for vanadium redox flow battery[J]. Journal of Colloid and Interface Science, 2019, 542: 177-186. [30] Zhang B, Cao Y, Jiang S, et al. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity[J]. J Membr Sci 2016, 518: 243-253. [31] Ibrahim A, Hossain O, Chaggar J, et al. GO-nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(8): 5526-5534. [32] Yin C, Li J, Zhou Y, et al. Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14026-14035. [33] Wu W, Li Y, Liu J, et al. Molecular‐level hybridization of Nafion with quantum dots for highly enhanced proton conduction[J]. Advanced Materials, 2018, 30(16): 1707516. [34] Maiti J, Kakati N, Woo S P, et al. Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell[J]. Composites Science and Technology, 2018, 155: 189-196. [35] Klose C, Breitwieser M, Vierrath S, et al. Electrospun sulfonated poly (ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes[J]. Journal of Power Sources, 2017, 361: 237-242. [36] Yan L, Zhu S, Ji X, et al. Proton hopping in phosphoric acid solvated NAFION membrane: a molecular simulation study[J]. The Journal of Physical Chemistry B, 2007, 111(23): 6357-6363. [37] Aili D, Hansen M K, Pan C, et al. Phosphoric acid doped membranes based on Nafion®, PBI and their blends–Membrane preparation, characterization and steam electrolysis testing[J]. international Journal of Hydrogen Energy, 2011, 36(12): 6985-6993. [38] Zhai Y, Zhang H, Zhang Y, et al. A novel H3PO4/Nafion–PBI composite membrane for enhanced durability of high temperature PEM fuel cells[J]. Journal of Power Sources, 2007, 169(2): 259-264. [39] Je-Deok K I M, Suzuki A, Jun M S. Nafion-Azole-H3PO4 Composite Membranes Using Solution Processing for High Temperature PEMFCs[J]. ECS Transactions, 2013, 58(1): 1185. [40] Yin Y, Li Z, Yang X, et al. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework[J]. Journal of Power Sources, 2016, 332(15): 265-273. [41] Lee J W, Yi C W, Kim K. Phosphoric acid-functionalized mesoporous silica/nafion composite membrane for high temperature PEMFCs[J]. Bulletin of the Korean Chemical Society, 2012, 33(4): 1397-1400. [42] Zhang J, Liu J, Lu S, et al. Ion-exchange-induced selective etching for the synthesis of amino-functionalized hollow mesoporous silica for elevated-high-temperature fuel cells[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31922-31930. [43] Ketpang K, Son B, Lee D, et al. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions[J]. J Membr Sci, 2015, 488: 154-165. [44] Li J, Fan K, Cai W, et al. An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application[J]. Journal of Power Sources, 2016, 332: 37-41. [45] Li J, Xu G, Cai W, et al. Non-destructive modification on Nafion membrane via in-situ inserting of sheared graphene oxide for direct methanol fuel cell applications[J]. Electrochimica Acta, 2018, 282: 362-368. [46] Li J, Xu G, Luo X, et al. Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application[J]. Applied Energy, 2018, 213: 408-414. [47] Xu G, Li J, Ma L, et al. Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler[J]. Journal of Membrane Science, 2017, 534: 68-72. [48] Xu G, Wu Z, Wei Z, et al. Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell[J]. Renewable Energy, 2020, 153: 935-939. [49] Mauritz K A, Stefanithis I D, Davis S V, et al. Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction[J]. Journal of Applied Polymer Science, 1995, 55(1): 181-190. [50] Xi J, Wu Z, Qiu X, et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2007, 166(2): 531-536. [51] Chen Z, Holmberg B, Li W, et al. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell[J]. Chemistry of Materials, 2006, 18(24): 5669-5675. [52] Xu G, Li S, Li J, et al. Targeted filling of silica in Nafion by a modified in situ sol–gel method for enhanced fuel cell performance at elevated temperatures and low humidity[J]. Chemical Communications, 2019, 55(38): 5499-5502. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号