Construction and gas separation performance of MXene@PEI/IL composite membranes |
Authors: LUO Wenjia, LI Fei, ZHANG Xi, LI Jian |
Units: (1. Northwest Research Institute of Mining and Metallurgy, Fine Chemical Institute, Baiyin 730900, China 2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China |
KeyWords: MXene nanosheets; CO2 capture; CO2-philic; IL |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2024,44(1):37-44 |
Abstract: |
Membrane separation technology has the advantages of green, high efficiency and environmental protection, and has become a research hotspot in the field of gas separation. In this study, MXene nanosheets were first combined with PEI, and then different loads of IL were spin coated on the upper surface of MXene@PEI membrane to form a high-performance MXene@PEI/IL composite membrane. The morphology, internal structure and thermal stability of MXene nanosheets and MXene@PEI/IL composite films were investigated by SEM, TEM, AFM, FT-IR, XRD and TGA. The results show that the positive charge of PEI and the negative charge of MXene enhance the film compatibility through electrostatic interaction. In addition, the effects of IL loading, temperature and operation time on the separation performance of MXene@PEI/IL composite membranes were systematically investigated. At 25 °C and 1bar, the maximum CO2 permeance of MXene@PEI/IL composite membrane for CO2/N2 separation was 481.78 GPU, and that for CO2/CH4 separation was 333.21 GPU. At the same time, MXene@PEI/IL composite membrane showed excellent selectivity for CO2/N2 (35.30) and CO2/CH4 (32.13). The membranes prepared in this study also show excellent durability and great potential for CO2 separation. |
Funds: |
国家自然科学基金资助项目(51872245);甘肃省自然科学重点基金项目(23JRRA680);甘肃省高校产业支撑项目(2023CYZC-16);兰州市科技计划项目(2022-2-78) |
AuthorIntro: |
骆文佳(1994-),男,甘肃定西人,硕士,助理工程师,主要研究方向为气体分离膜材料的制备及应用 |
Reference: |
[1] Ding X, Liu Z, Zhang Y, et al. Binary solvent regulated architecture of ultra-microporous hydrogen-bonded organic frameworks with tunable polarization for highly-selective gas separation[J]. Angewandte Chemie International Edition, 2022, 61(13): e202116483. [2] Goh S H, Lau H S, Yong W F. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications[J]. Small, 2022, 18(20): e2107536. [3] Tanvidkar P, Appari S, Kuncharam B V R. A review of techniques to improve performance of metal organic framework (MOF) based mixed matrix membranes for CO2/CH4 separation[J]. Reviews in Environmental Science and Bio/Technology, 2022,21: 539–569. [4] Comesaña-Gándara B, Chen J, Bezzu C G, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy & Environmental Science, 2019, 12(9): 2733-2740. [5] Kamble A R, Patel C M, Murthy Z V P. A review on the recent advances in mixed matrix membranes for gas separation processes[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111062. [6] Ying W, Hou Q, Chen D, Guo Y, Li Z, Zhang J, Yan Y, Peng X, Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane[J]. Journal of Materials Chemistry A, 2019, 7: 10041-10046. [7] Ying W, Zhou K, Hou Q, Chen D, Guo Y, Zhang J, Yan Y, Xu Z, Peng X, Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 9: 15062-15067. [8] Xu P, Zhang X C, et al. Prominently improved CO2/N2 separation efficiency by ultrathin-ionic-liquid-covered MXene membrane[J], Separation and Purification Technology, 2023, 311:123296. [9] Tang R, Xiong S, Gong D, et al. Ti3C2 2D MXene: recent progress and perspectives in photocatalysis[J]. ACS Appl Mater Interfaces, 2020, 12(51): 56663-56680. [10] Lin H, Gong K, Hykys P, Chen D, Ying W, Sofer Z, Yan Y, Li Z, Peng X, Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation[J], Chemical Engineering Journal, 405 (2021) 126961. [11] Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat Commun, 2018, 9(1): 155. [12] Gong K, Zhou K, Qian X, et al. MXene as emerging nanofillers for high-performance polymer composites: A review[J]. Composites Part B: Engineering, 2021, 217: 108867. [13] Ma Y, Gao F, Pan R, et al. Separation membranes with long-term stability and high flux prepared through intramembrane dopamine-based nanoparticle assembly[J]. Journal of Membrane Science, 2022, 654: 120563. [14] Zeng S, Zhang X, Bai L, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chem Rev, 2017, 117(14): 9625-9673. [15] Jia Y, Shi F, Li H, Yan Z, Xu J, Gao J, Wu X, Li Y, Wang J, Zhang B, Facile Ionization of the Nanochannels of Lamellar Membranes for Stable Ionic Liquid Immobilization and Efficient CO2 Separation, ACS Nano, 16 (2022) 14379-14389. [16] Ahmed Z, Rehman F, Ali U, et al. Recent advances in MXene-based separation membranes[J]. Chembioeng Reviews, 2021, 8(2): 110-120. [17] Wang Y, Zhou Y, Zhang X, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189. [18] 孙成珍, 罗东, 白博峰. 二维材料气体分离膜及其应用研究进展[J]. 科学通报: 1-19. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号