Position:Home >> Abstract

Preparation of partially carbonized PTFE/PVDF hollow fiber membrane and its oil-water separation performance
Authors: ZHANG Ziying, XIAO Fen, SHENG Mingxin, DONG Yongquan
Units: 1 National and Local Joint Engineering Research Center for Heavy Metal Pollutant Control and Resource Utilization ,Nanchang 330063, , China;2 School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, , China
KeyWords: Oil-water separation; Phase conversion-carbonization; PTFE; Hollow fiber membrane
ClassificationCode:TQ028.4
year,volume(issue):pagination: 2024,44(1):45-55

Abstract:
 The hydrophobic fluorocarbon material, polytetrafluoroethylene (PTFE), poses challenges in film formation through phase conversion. In this work, a PTFE suspension was obtained by dispersing PTFE powder in a polyvinylidene fluoride (PVDF) solution. Firstly, the PTFE/PVDF hollow fiber membrane embryo was prepared using a dry and wet phase conversion method. Subsequently, partial carbonization of the PTFE/PVDF hollow fiber membrane was achieved under a nitrogen atmosphere. The carbonization process of the membrane embryo, surface element and microstructure changes before and after membrane carbonization was studied using thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Finally, the changes in hydrophilicity and oil-water separation performance were evaluated for the membrane. The results revealed that PVDF within the PTFE/PVDF hollow fiber membrane embryo underwent C-H fracture at 360-450℃ while partially carbonizing the membrane structure. This led to a reduction in pore size and formation of a continuous and complete microporous structure within the partially carbonized hollow fiber membranes. With 40% PTFE content, after carbonization, the contact angle of the film reached 102° indicating increased hydrophobicity. Moreover, when tested with simulated oil-bearing wastewater containing 10% oil content, these membranes exhibited an impressive permeation flux of 30 L?m-2?h-1 (Transmembrane differential pressure 0.1MPa) along with an efficient separation efficiency reaching up to 80%. These results highlight their promising potential for commercial applications in effective oil-water separation.

Funds:

AuthorIntro:
张紫莹(2000-),女,学生,江西萍乡人,硕士研究生,研究方向为膜法水处理方向,E-mail:1846384674@qq.com

Reference:
 [1] Wang Z X, Lau C H, Zhang N Q, et al. Mussel-inspired tailoring of membrane wettability for harsh water treatment[J]. Journal of Materials Chemistry A, 2015, 3(6): 2650-2657.
[2] Rasouli S, Rezaei N, Hamedi H, et al. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review[J]. Materials & Design, 2021, 204: 109599.
[3] Li X, Wang M, Wang C, et al. Facile immobilization of Ag nanocluster on nanofibrous membrane for oil/water separation[J]. ACS applied materials & interfaces, 2014, 6(17): 15272-15282.
[4] Ma W, Zhao J, Oderinde O, et al. Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation[J]. Journal of colloid and interface science, 2018, 532: 12-23.
[5] Li B, Qi B, Guo Z, et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review[J]. Chemosphere, 2023: 138528.
[6] He M, Wang J, Li H, et al. Super-hydrophobic film retards frost formation[J]. Soft Matter, 2010, 6(11): 2396-2399.
[7] Feng S, Zhong Z, Wang Y, et al. Progress and perspectives in PTFE membrane: Preparation, modification, and applications[J]. Journal of membrane science, 2018, 549: 332-349.
[8] Zhu H, Wang H, Wang F, et al. Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation[J]. Journal of membrane science, 2013, 446: 145-153.
[9] Wang M, Xu Z, Guo Y, et al. Engineering a superwettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property[J]. Journal of membrane science, 2020, 611: 118409.
[10] 焦阳. 亲水性聚乳酸分离膜的制备及其性能研究[D].哈尔滨工业大学, 2021.
[11] Tong Y J, Zuo C J, Ding W L, et al. Sulfonic nanohydrogelled surface-modified microporous polyvinylidene fluoride membrane with excellent antifouling performance for treating water-oil separation of kitchen wastewater[J]. Journal of membrane science, 2021, 628(15): 119113.
[12] Wang D, Liu F L, Zhang X Y, et al. A Janus facilitated transport membrane with asymmetric surface wettability and dense/porous structure: Enabling high stability and separation efficiency[J]. Journal of membrane science, 2021, 626(15): 119183.
[13] Stengaard F F. Preparation of asymmetric microfiltration membranes and modification of their properties by chemical treatment[J]. Journal of Membrane Science, 1988, 36: 257-275.
[14] Sternberg S. Process for grafting amino acid molecules onto preformed polymer surfaces and products prepared thereby: U.S. Patent 4,340,482[P]. 1982-7-20.
[15] Zhao J, Shi L, Loh C H, et al. Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane distillation via thermally induced phase separation method[J]. Desalination, 2018, 430: 86-97.
[16] Wang K Y, Chung T S, Gryta M. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation[J]. Chemical Engineering Science, 2008, 63(9): 2587-2594.
[17] Xu M, Cheng J, Du X, et al. Amphiphobic electrospun PTFE nanofibrous membranes for robust membrane distillation process[J]. Journal of Membrane Science, 2022, 641: 119876.
[18] Tang H, Hao L, Chen J, et al. Surface modification to fabricate superhydrophobic and superoleophilic alumina membranes for oil/water separation[J]. Energy & Fuels, 2018, 32(3): 3627-3636.
[19] Du C, Wang Z, Liu G, et al. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126790.
[20] Liu F, Hashim N A, Liu Y T, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science, 2011, 375: 1-27.
[21] Su C L, Li Y P, Cao H B, et al. Novel PTFE hollow fiber membrane fabricated by emulsion electrospinning and sintering for membrane distillation[J]. Journal of Membrane Science, 2019, 586: 200-208.
[22] Zhao P F, Soin N, Prashanthi K, et al. Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators[J]. ACS applied materials & interfaces, 2018, 10(6): 5880-5891.
[23] Huang Y, Xiao C, Huang Q, et al. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development[J]. Chemical Engineering Journal, 2021, 403: 126295.
[24] 陈利芳, 陆晓峰, 卞晓锴, 等. PVDF-g-PVP及PVDF/PVP 微滤膜的制备与表征[J]. 膜科学与技术, 2014, 34(2): 18-22.
[25] Lisendra M, Muhammad R B, Vankelecom I F J. Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors[J]. Separation and Purification Technology, 2019, 213(15): 276-282.
[26] Dong Z Q, Ma X, Xu Z L, et al. Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation[J]. Desalination, 2014, 347: 175-183.
[27] 杜梦帆. 疏水性PVDF中空纤维复合膜的制备及其CO2 吸收性能研究[D]. 南京大学, 2019.
[28] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of membrane science, 2011, 375(1-2): 1-27.
[29] Zhou T, Yao Y, Xiang R, et al. Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation[J]. Journal of membrane science, 2014, 453: 402-408.
[30] Xue Z, Cao Y, Liu N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8): 2445-2460.
[31] Kang G, Cao Y. Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review[J]. Journal of membrane science, 2014, 463: 145-165.
[32] Tang Y, Li N, Liu A, et al. Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation[J]. Desalination, 2012, 287: 326-339.
[33] Huang Y, Huang Q L, Liu H, et al. Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes[J]. Journal of Membrane Science, 2017, 523: 317-326.
[34] 吕晓龙. 疏水膜的污染, 润湿与干燥探讨[J]. 膜科学与技术, 2020, 40(1): 196-203.
[35] Teoh M M, Chung T S. Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes[J]. Separation and Purification Technology, 2009, 66(2): 229-236.
[36] 孙怡坤, 李少萍. PTFE 表面枝接纳米 SiO2 制备高效除油的超疏水材料[J]. 石油炼制与化工, 2020, 51(8): 104-110.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号