Position:Home >> Abstract

Preparation and adsorption properties of CTA hollow fiber affinity chromatography
Authors: LI Shuqin, WU Jiaojie, ZHOU Junjie, WEI Yongming, XU Zhenliang, YANG Hu
Units: Joint State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Research Center of Functional Membrane Science and Engineering, Shanghai 200237,China
KeyWords: surface modification; CTA hollow fiber affinity chromatography; static adsorption; dynamic adsorption
ClassificationCode:TQ028.3
year,volume(issue):pagination: 2024,44(2):97-106

Abstract:
  In order to explore the adsorption properties of cellulose triacetate (CTA) hollow fiber affinity chromatography, the CTA hollow fiber membrane was used as the basal membrane, The surface of the membrane was modified by hydrolysis, crosslinking activation of 1,4-butanediol diglycidyl ether (EGDE), grafting 1,6-hexanediamine (HMDA) as the spacer arm, and then the modified CTA hollow fiber affinity chromatography was prepared by chelating Cu2+ with iminodiacetic acid (IDA) as ligand. In the static adsorption study of γ-globulin: when the concentration of γ-globulin adsorption solution is 1 mg/mL, ion concentration is 0.2mol/L and pH=8, the maximum static adsorption capacity is 2.4mg/cm3. The adsorption process accords with Langmuir isothermal adsorption model. For the study of dynamic adsorption of γ-globulins: within the scope of experimental studies, the penetration curves at different flow rates were similar to "S" shape, and the flow rate did not affect the binding ability of γ-globulin on CTA hollow fiber affinity chromatography; The dynamic adsorption capacity of γ-globulin increased with the increase of initial concentration.
 

Funds:
国家自然科学基金项目(21978082,22278132,22078092).

AuthorIntro:
李淑琴(1997-),女,湖北仙桃市人,硕士生,研究方向为分离膜的制备及应用研究,E-mail: lsq13677292559@163.com

Reference:
 [1] Porath J, Carlsson J, Olssom I, et al. Metal chelate affinity chromatography, a new approach to protein fractionation[J]. Nature, 1975, 258(5536): 598–599.
[2] Moore C P, Pieterson K, Desousa J M, et al. Characterization and utility of immobilized metal affinity-functionalized cellulose membranes for point-of-care malaria diagnostics[J]. J Chromatogr B, 2021, 1186: 123023.
[3] Chen J, Yu B, Cong H, et al. Recent development and application of membrane chromatography[J]. Anal Bioanal Chem, 2022, 415(1): 45-65.
[4] Ribeiro M B, Vijayalakshmi M, Todorova B D, et al. Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes[J]. J Chromatogr B, 2008, 861(1): 64-73.
[5] Cheung R C, Wong J H, Ng T B. Immobilized metal ion affinity chromatography: A review on its applications[J]. Appl Microbiol Biotechnol, 2012, 96(6): 1411-1420.
[6] Block H, Maertens B, Spriestersbach A, et al. Immobilized-metal affinity chromatography (IMAC): A review[J]. Methods Enzymol, 2009, 463: 439-473.
[7] Jain P , Vyas M K , Geiger J H , et al. Protein purification with polymeric affinity membranes containing functionalized poly(acid) brushes[J]. Biomacromolecules, 2010, 11(4):1019-1026.
[8] Hong Y G, Zhen H S, Jun D W, et al. Influence of preparation conditions on properties of chemical modified nylon affinity membrane (used for γ-globulin adsorption)[J]. Chin J Chem, 2010, 18(4): 516-520.
[9] Ozeki K, Nagashima I, Hirakuri K K, et al. Adsorptive properties of albumin, fibrinogen, and gamma-globulin on fluorinated diamond-like carbon films coated on PTFE[J]. J Mater Sci-Mater M, 2010, 21(5): 1641-1648.
[10] Yavuz H, Bereli N, Yilmaz F, et al. Antibody purification from human plasma by metal-chelated affinity membranes[J]. Methods Biochem Anal, 2011, 123(6):3476-3484.
[11] Asena Ozbek M, Cimen D, Bereli N, et al. Metal-chelated polyamide hollow fiber membranes for ovalbumin purification from egg white[J]. J Chromatogr B, 2022, 1203: 123293.
[12] Lu P, Gao Y, Umar A, et al. Recent advances in cellulose-based forward osmosis membrane[J]. Sci Adv Mater, 2015, 7(10): 2182-2192.
[13] Madadkap P, Ghosh R. High-resolution protein separation using a laterally-fed membrane chromatography device[J]. J of Membr Sci, 2016, 499: 126-133.
[14] Boi C, Malavasi A, Carbonell R G, et al. A direct comparison between membrane adsorber and packed column chromatography performance[J]. J Chromatogr A, 2020, 1612: 460629.
[15] Ghosh R. Ultrahigh-speed, ultrahigh-resolution preparative separation of protein biopharmaceuticals using membrane chromatography[J]. J Sep Sci, 2022, 45(12): 2024-2033.
[16] Rathore A S, Muthukumar S. High-throughput process development: II. Membrane chromatography[J]. Methods Mol Biol, 2014, 1129: 39-44.
[17] Orr V, Zhong L, Moo-young M, et al. Recent advances in bioprocessing application of membrane chromatography[J]. Biotechnol Adv, 2013, 31(4): 450-465.
[18] Wang X, Xu J, Li L, et al. Thiourea grafted PVDF affinity membrane with narrow pore size distribution for Au (III) adsorption: Preparation, characterization, performance investigation and modeling[J]. Chem Eng J, 2017, 314: 700-713.
[19] Wei Y M, Li Y, Yang C, et al. More effective membrane chromatography[J]. AIChE J, 2015, 61(11): 3871-3878.
[20] Liu Y, Feng Z, Shao Z, et al. Chitosan-based membrane chromatography for protein adsorption and separation[J]. Mater Sci Eng C, 2012, 32(6): 1669-1673. 
[21] 魏永明,吴荣荣,许振良,等. 具有微米级内外径CTA中空纤维膜制备与表征[J]. 膜科学与技术,2018,38(5): 8-14.
[22] 吴荣荣. CTA螯合Cu2+亲和膜色谱的制备与表征[D]. 华东理工大学, 2018.
[23] Li Y, Sun Y. Poly(4-vinylpyridine): A polymeric ligand for mixed-mode protein chromatography[J]. J Chromatogr A, 2014, 1373: 97-105.
[24] Kosior A , Antosova M, Faber R , et al. Single-component adsorption of proteins on a cellulose membrane with the phenyl ligand for hydrophobic interaction chromatography[J]. J Membr Sci, 2013, 442: 216-224.
[25] Li X, Liu Y, Sun Y. Development of poly(methacrylate)-grafted Sepharose FF for cation-exchange chromatography of proteins[J]. J Chromatogr A, 2020, 1634: 461669.
[26] Ge D T, Shi W, Ren L, et al. Variation analysis of affinity-membrane model based on Freundlich adsorption[J]. J Chromatogr A, 2006, 1114(1): 40-44.
[27] Sun H, Zhang L, ChaiI H, et al. A study of human γ-globulin adsorption capacity of PVDF hollow fiber affinity membranes containing different amino acid ligands[J]. Sep Purif Technol, 2006, 48(3): 215-222.
[28] Xiang T, Fu H, Yue W W, et al. Preparation and characterization of poly(acrylonitrile-co-maleic anhydride) copolymer modified polyethersulfone membranes[J]. Sep Sci Technol, 2013, 48(11): 1627-1635.
[29] Kanavova N, Kosior A, Antosova M, et al. Application of a micromembrane chromatography module to the examination of protein adsorption equilibrium[J]. J Sep Sci, 2012, 35(22): 3177-3183.
[30] 兰天. 醋酸纤维素基纳米纤维膜制备及其在蛋白质分离与纯化的应用[D]. 北京理工大学, 2016.
[31] Hwang T S, Park J W. Preparation of modified hollow polypropylene membrane and their adsorption properties of γ-globulins[J]. Macromol Res, 2003, 11(5):347-351. 
[32] Yakup A M , Akn-Oktem G , Denizli A . Novel hydrophobic ligand-containing hydrogel membrane matrix: Preparation and application to gamma-globulins adsorption[J]. Colloid Surface B, 2001, 21(4): 273-283.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号