Position:Home >> Abstract

Construction and properties research of anticoagulated asymmetric PMP membrane based on CO2 facilitated transport
Authors: TIAN Yi, ZHU Yixue, TONG Xiao, WANG Minjie, JIA Guiling, CHEN Dajing, HUANG Xiaojun
Units: 1. Zhejiang University, Department of Polymer Science and Engineering, Hangzhou 310027, China; 2. Hangzhou Normal University, School of Pharmacy, Faculty of Medicine, Hangzhou 311121, China; 3. Challenge IM (Beijing) Technology Co., Ltd, Beijing 102600, China
KeyWords: PMP(poly-4-methyl-1-pentene); Layer by layer self-assembly; Asymmetric anticoagulated structure; CO2 gas transport
ClassificationCode:R318.08;TB324;TQ028
year,volume(issue):pagination: 2024,44(3):38-48

Abstract:
 In the COVID-19 epidemic era, ECMO(Extracorporeal Membrane Oxygenation), which provides temporary support for the cardiopulmonary function of critically ill patients, is particularly important for humans. However, the core component of ECMO, oxygenated membrane material, has been monopolized by 3M company. Therefore, it is of great significance to realize the localization of oxygenated membrane. PMP(poly-4-methyl-1-pentene) has great potential in oxygenated membrane materials due to its excellent gas permeability and biocompatibility. Here we used PMP hollow fiber membrane prepared by TIPs(Thermally Induced Phase separation) as the substrate, and then introduced the positive and negative charge modification layers composed of PEI (polyethyleneimine) and heparin on the surface through layer by layer self-assembly driven by electrostatic force. Through this work, the PMP composite membrane with asymmetric structure was prepared, and the effects of modification conditions on the surface structure and composition, gas transport, blood compatibility and other properties of the composite membrane were studied. The result showed that the PEI-heparin modification layer introduced by layer-by-layer self-assembly greatly improved the gas transport performance and blood compatibility of the PMP hollow fiber composite membrane, which gave it important application potential in the fields of gas separation and membrane oxygenation.
 

Funds:
国家自然科学基金资助项目(22075242,52103271),国家自然科学基金区域创新重点项目(U21A20300)

AuthorIntro:
田 懿(2002-),女,湖北恩施人,博士生,研究方向为微藻CO2捕集

Reference:
 [1]吴艳丽, 冷秋, 张凡. 新冠肺炎危重症患者行ECMO治疗院内转运护理[J]. 齐鲁护理杂志, 2020, 26(18): 117-119.
[2]饶华新. 新型中空纤维人工肺的设计与研究[D]. 广州: 暨南大学, 2008.
[3]胡小琴. 心血管麻醉及体外循环[M]// 北京: 人民卫生出版社, 1997.
[4]罗本喆, 张  军, 王晓林. 热致相分离法制备聚烯烃微孔膜研究进展[J]. 高分子通报, 2005, (3): 40-46. 
[5]Ahrumi P, Yejin S, Eunsung Y, et al. Blood oxygenation using fluoropolymer-based artificial lung membranes[J]. ACS Biomater Sci Eng, 2020, 6(11): 6424-6434.
[6]Mckeen L W. Permeability properties of plastics and elastomers: fourth edition[M]// New York: William Andrew Publishing, 2017.
[7]杜宇倩, 邵丽萍, 潘福生, 等. 聚-4-甲基-1-戊烯中空纤维氧合膜的研究进展与面临的挑战[J]. 膜科学与技术, 2021, 41(3): 169-178.
[8]闫江毅, 朱元璐, 高  明, 等. 热致相分离制膜方法的研究及应用进展[J]. 胶体与聚合物, 2021, 39(4): 185-189.
[9]Castro A J. Method for making microporous products[P]. United States of America, A, 4247498. 1981.
[10]Mueller M O, Kessler E, Hornscheidt R R, et al. Integrally asymmetrical polyolefin membrane for gas exchange[P]. Australia, A, 2000026651. 2000.
[11]Kessler E, Batzilla T, Wechs F, et al. Method for producing an integrally asymmetrical polyolefin membrane[P]. Europe, B1, 1140331. 2001.
[12]Kessler E, Batzilla T, Wechs F, et al. Polyolefin membrane with an integrally asymmetric structure and method for the production thereof[P]. China, C, 1622850. 2005.
[13]Gao A L, Liu F, Xue L X. Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis[J]. J Membr Sci, 2014, 452: 390-399. 
[14]Wang L R, Qin H, Nie S Q, et al. Direct synthesis of heparin-like poly(ether sulfone) polymer and its blood compatibility[J]. Acta Biomater, 2013, 9(11): 8851-8863.
[15]Santos A M, Habert A C, Ferraz H C. Development of functionalized polyetherimide/polyvinylpyrrolidone membranes for application in hemodialysis[J]. J Mater Sci: Mater Med, 2017, 28(9): 131.
[16]Huang X, Wang W P, Zheng Z, et al. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators[J]. Appl Surf Sci, 2016, 362: 355-363.
[17]聂莉娟. 基于聚乙烯亚胺改性和接枝的多孔材料制备及其对CO2吸附性能研究[D]. 北京: 北京化工大学, 2019.
[18]Guo X Y, Huang H L, Liu D H, et al. Improving particle dispersity and CO2 separation performance of amine-functionalized CAU-1 based mixed matrix membranes with polyethyleneimine-grafting modification[J]. Chem Eng Sci, 2018, 189: 277-285.
[19]Yu Y W, Wang J H, Wang Y, et al. Polyethyleneimine-functionalized phenolphthalein-based cardo poly(ether ether ketone) membrane for CO2 separation[J]. J Ind Eng Chem, 2020, 83: 20-28.
[20]Yu X F, Zhu Y D, Zhang T H, et al. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis[J]. J Membr Sci, 2020, 599: 117706.
[21]诸俊杰. 功能化多孔材料的制备及其CO2吸附性能[D]. 浙江: 浙江大学, 2019.
[22]姚蔓莉, 董艳艳, 谢菁, 等. 聚乙烯亚胺修饰的氧化硅纳米管基吸附剂的制备及其CO2吸附应用[J]. 物理化学学报, 2014, 30(04): 789-796.
[23]Horbett T A, Brash J L. Proteins at interfaces Ⅱ[J]. ACS Symp, 1995, 30(05): 283-326.
[24]Horbett T A, Weathersby P K. Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. II. Compositional analysis with the prelabeled protein technique[J]. J Biomed Mater Res, 1981, 15(3): 403-423. 
[25]周名勇, 王灵辉, 林春儿, 等. 表面肝素固定化提高聚醚砜膜血液相容性[C]// 2016年中国-欧盟医药生物膜科学与技术研讨会. 中国膜工业协会, 2016.
[26]赵肖. 中空纤维膜的层层自组装制备及其在膜式氧合器中的应用研究[D]. 广州: 暨南大学, 2016.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号