Research Progress on Membrane Reactor For CO2 Hydrogenation to Fuels |
Authors: XU Yueyang , XUE Zhigang , LIU Bo , ZHOU Rongfei |
Units: 1 State Key Laboratory for Clean and Efficient Coal-fired Power Generation and Pollution Control, CHN Energy Science and Technology Research Institute Co. Ltd, Nanjing 210031China; 2 National Engineering Research Center for Special Separation Membrane,Nanjing Tech University, Nanjing 210009, China |
KeyWords: Membrane reactor; CO2 hydrogenation; Methanol; Fuel; Process intensification; Water-selective membrane |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2024,44(3):143-152 |
Abstract: |
High-value CO2 utilization technologies, such as CO2 hydrogenation to methanol, can not only achieve CO2 recycling, but also generate significant social and economic value, which is an important way to achieve carbon neutrality. Research on catalysts for CO2 hydrogenation to methanol has matured, but the CO2 conversion efficiency is still lower than expected due to the limitations of thermodynamic equilibrium and catalyst deactivation induced by by-product water. Membrane reactor has been applied to overcome the thermodynamic limitation of CO2 hydrogenation reaction, which has played an important role in process intensification and greatly improved the efficiency of CO2 utilization. Against this background, the role of various membrane separation performances in improving the reaction properties in membrane reactors was systematically reviewed. The future opportunities and challenges of membrane reactors in CO2 hydrogenation to methanol are also presented. |
Funds: |
AuthorIntro: |
许月阳:(1979-),江苏泰州人,主要从事煤电污染物控制及资源化技术开发与工程应用研究 |
Reference: |
[1] Kätelhön A, Meys R, Deutz S, et al. Climate change mitigation potential of carbon capture and utilization in the chemical industry[J]. Proc. Natl. Acad. Sci., 2019, 116(23): 11187–11194. [2] Zhang X, Zhang G, Song C, et al. Catalytic conversion of carbon dioxide to methanol: Current status and future perspective[J]. Front. Energy Res., 2021, 8: 621119. [3] Shih C F, Zhang T, Li J, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925–1949. [4] Zhong J, Yang X, Wu Z, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem. Soc. Rev., 2020, 49(5): 1385–1413. [5] Navarro-Jaén S, Virginie M, Bonin J, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nat. Rev. Chem., 2021, 5(8): 564–579. [6] Goeppert A, Czaun M, Jones J-P, et al. Recycling of carbon dioxide to methanol and derived products – closing the loop[J]. Chem. Soc. Rev., 2014, 43(23): 7995–8048. [7] Saravanan A, Senthil Kumar P, Vo D., et al. A comprehensive review on different approaches for CO2 utilization and conversion pathways[J]. Chem. Eng. Sci., 2021, 236: 116515. [8] Kothandaraman J, Goeppert A, Czaun M, et al. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016, 138(3): 778–781. [9] Thrane J, Kuld S, Nielsen N D, et al. Methanol‐assisted autocatalysis in catalytic methanol synthesis[J]. Angew. Chem. Int. Ed., 2020, 59(41): 18189–18193. [10] Zabilskiy M, Sushkevich V L, Palagin D, et al. The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol[J]. Nat. Commun., 2020, 11(1): 2409. [11] Bellotti D, Rivarolo M, Magistri L, et al. Feasibility study of methanol production plant from hydrogen and captured carbon dioxide[J]. J. CO2 Util., 2017, 21: 132–138. [12] 邢卫红,陈日志,姜 红等. 无机膜与膜反应器[M]// 北京:化学工业出版社,2019:339. [13] Biswal T, Shadangi K P, Sarangi P K, et al. Conversion of carbon dioxide to methanol: A comprehensive review[J]. Chemosphere, 2022, 298: 134299. [14] Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem. Rev., 2020, 120(15): 7984–8034. [15] Ren M, Zhang Y, Wang X, et al. Catalytic hydrogenation of CO2 to methanol: A review[J]. Catalysts, 2022, 12(4): 403. [16] Lee W J, Li C, Prajitno H, et al. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review[J]. Catal. Today, 2021, 368: 2–19. [17] Ra E C, Kim K Y, Kim E H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catal., 2020, 10(19): 11318–11345. [18] Huš M, Dasireddy V D B C, Strah Štefan?i? N, et al. Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts[J]. Appl. Catal. B: Environ., 2017, 207: 267–278. [19] Poormohammadian S J, Bahadoran F, Vakili-Nezhaad G R. Recent progress in homogeneous hydrogenation of carbon dioxide to methanol[J]. Rev. Chem. Eng., 2023, 39(5): 783–805. [20] Wallace W T, Hayward J S, Ho C-Y, et al. Triethylamine–water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol[J]. Top. Catal., 2021, 64(17–20): 984–991. [21] Schwiderowski P, Ruland H, Muhler M. Current developments in CO2 hydrogenation towards methanol: A review related to industrial application[J]. Curr. Opin. Green Sust., 2022, 38: 100688. [22] Kar S, Kothandaraman J, Goeppert A, et al. Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol[J]. J. CO2 Util., 2018, 23: 212–218. [23] Dybbert V, Fehr S M, Klein F, et al. Oxidative Fluorination of Cu/ZnO methanol catalysts[J]. Angew. Chem. Int. Ed., 2019, 58(37): 12935–12939. [24] Wang Y, Kattel S, Gao W, et al. Exploring the ternary interactions in Cu/ZnO/ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J]. Nat. Commun., 2019, 10(1): 1166. [25] Li D, Xu F, Tang X, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol[J]. Nat. Catal., 2022, 5(2): 99–108. [26] Martin O, Martín A J, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew. Chem. Int. Ed., 2016, 55(21): 6261–6265. [27] Li S, Wang Y, Yang B, et al. A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol[J]. Appl. Catal. A: Gen., 2019, 571: 51–60. [28] Dang S, Yang H, Gao P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catal. Today, 2019, 330: 61-75. [29] Muradov N, Vezirolu T. From hydrocarbon to hydrogen-carbon to hydrogen economy[J]. Int. J. Hydrogen Energy, 2005, 30(3): 225–237. [30] Wu Q, Liang S, Zhang T, et al. Current advances in bimetallic catalysts for carbon dioxide hydrogenation to methanol[J]. Fuel, 2022, 313: 122963. [31] Bansode A, Urakawa A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products[J]. J. Catal., 2014, 309: 66–70. [32] Hu J, Yu L, Deng J, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nat. Catal., 2021, 4(3): 242–250. [33] Ghosh S, Sebastian J, Olsson L, et al. Experimental and kinetic modeling studies of methanol synthesis from CO2 hydrogenation using In2O3 catalyst[J]. Chem. Eng. J., 2021, 416: 129120. [34] Sato K, Sugimoto K, Sekine Y, et al. Application of FAU-type zeolite membranes to vapor/gas separation under high pressure and high temperature up to 5MPa and 180°C[J]. Microporous Mesoporous Mater., 2007, 101(1–2): 312–318. [35] Sawamura K-I, Shirai T, Takada M, et al. Selective permeation and separation of steam from water–methanol–hydrogen gas mixtures through mordenite membrane[J]. Catal. Today, 2008, 132(1–4): 182–187. [36] Sawamura K, Izumi T, Kawasaki K, et al. Reverse-selective microporous membrane for gas separation[J]. Chem. – Asian J., 2009, 4(7): 1070–1077. [37] Wang N, Liu Y, Huang A, et al. Hydrophilic SOD and LTA membranes for membrane-supported methanol, dimethylether and dimethylcarbonate synthesis[J]. Microporous Mesoporous Mater., 2015, 207: 33–38. [38] Raso R, Tovar M, Lasobras J, et al. Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol[J]. Catal. Today, 2021, 364: 270–275. [39] Deng Y, Li Z, Chen T, et al. Low-cost and facile fabrication of defect-free water permeable membrane for CO2 hydrogenation to methanol[J]. Chem. Eng. J., 2022, 435: 133554 [40] Song G, Zhou W, Li C, et al. Semi-hollow LTA zeolite membrane for water permeation in simulated CO2 hydrogenation to methanol[J]. J. Membr. Sci., 2023, 678: 121666. [41] Hirota Y, Yamamoto Y, Nakai T, et al.Application of silylated ionic liquid-derived organosilica membranes to simultaneous separation of methanol and H2O from H2 and CO2 at high temperature[J]. J. Membr. Sci., 2018, 563: 345–350. [42] Li Z, Deng Y, Wang Z, et al. A superb water permeable membrane for potential applications in CO2 to liquid fuel process[J]. J. Membr. Sci., 2021, 639: 119682. [43] Struis R P W J, Stucki S. Verification of the membrane reactor concept for the methanol synthesis[J]. Appl. Catal. A: Gen., 2001, 216(1–2): 117–129. [44] Barbieri G, Marigliano G, Golemme G, et al.Simulation of CO2 hydrogenation with CH3OH removal in a zeolite membrane reactor[J]. Chem. Eng. J., 2002, 85(1): 53–59. [45] Struis R P W J, Stucki S, Wiedorn M. A membrane reactor for methanol synthesis[J]. J. Membr. Sci., 1996, 113(1): 93–100. [46] Pham Q H, Goudeli E, Scholes C A. Selective separation of water and methanol from hydrogen and carbon dioxide at elevated temperature through polyimide and polyimidazole based membranes[J]. J. Membr. Sci., 2023, 686: 121990. [47] Chen G. Methanol synthesis from CO2 using a silicone rubber/ceramic composite membrane reactor[J]. Sep. Purif. Technol., 2004, 34(1–3): 227–237. [48] Farsi M, Jahanmiri A. Application of water vapor-permselective alumina–silica composite membrane in methanol synthesis process to enhance CO2 hydrogenation and catalyst life time[J]. J. Ind. Eng. Chem., 2012, 18(3): 1088–1095. [49] Farsi M, Jahanmiri A. Methanol production in an optimized dual-membrane fixed-bed reactor[J]. Chem. Eng. Process., 2011, 50(11): 1177–1185. [50] Morigami Y, Kondo M, Abe J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Sep. Purif. Technol., 2001, 25(1–3): 251–260. [51] Gallucci F, Paturzo L, Basile A. An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor[J]. Chem. Eng. Process., 2004, 43(8): 1029–1036. [52] Li H, Qiu C, Ren S, et al. Na+ -gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667–671. [53] Liu B, Kita H, Yogo K. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration[J]. Sep. Purif. Technol., 2020, 239: 116533. [54] Seshimo M, Liu B, Lee H R, et al. Membrane reactor for methanol synthesis using Si-rich LTA zeolite membrane[J]. Membranes, 2021, 11(7): 505. [55] Yue W, Li Y, Wei W, et al.Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. Angew. Chem. Int. Ed., 2021, 60(33): 18289–18294. [56] Tian C, Huang A. Synthesis of a Cu/Zn-BTC@LTA derivatived Cu–ZnO@LTA membrane reactor for CO2 hydrogenation[J]. J. Membr. Sci., 2022, 662: 121010. [57] 李 玲,绿色甲醇路线受追捧,中国能源报,2023.3.06,第10版 |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号