Structure property relationships ofpolyimide membraneswithlow thermal expansion coefficient |
Authors: LUO Chen, SUN Luxin, WANG Jinke, ABDUHELIL Yakup, DONG Yue, DONG Xiao, ZHU Dezhao, DAI Zhengyu, YANG Weisheng, MA Xiaohua |
Units: 1.Petrochemical Research Institute PetroChina, Beijing 102206, China; 2.State Key Laboratory of Membrane Separation and Membrane Process, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; 3.College of Science, China University of Petroleum(Beijing), Beijing102249, China ; 4.Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China |
KeyWords: Membrane; Polyimide; CTE; Crosslinking; Hydrogen bonding |
ClassificationCode:TQ31 |
year,volume(issue):pagination: 2024,44(3):174-184 |
Abstract: |
It’s of great significance to fine tuning the thermal expansion coefficient (CTE) of Polyimide membranes due to its wide applications in chip manufacture, integrated circulate encapsulation, and organic light emitting devices. Here, we summarized the recently reported literatures for regulating the CTE of polyimide membranes from molecular level and condensation states. By starting from the principle of CTE, we focus on the main chain structures, chain connecting sequence, substitutions, copolymerization, intra-and inter- molecular interactions, crosslinking that change the polyimide chain from the molecular structures to their CTE values. At the same time, we also summarized the doping, blending, alignment, membrane formation process and imidization methods that can tune their CTE from the condensation states. At last, we summarized the future directions for low CTE polyimide membranes and their plausible regulating methods. |
Funds: |
国家自然科学基金(22078245,2237080314) |
AuthorIntro: |
罗琛(1979-),男,请补充籍贯高级工程师,博士研究生,材料与工艺,E-mail:luochen@petrochina.com.cn |
Reference: |
[1]华经产业研究院, 中国聚酰亚胺行业发展现状研究与投资前景预测报告2022-2029[R]. 2022. [2]国家新材料产业发展战略咨询委员会, 聚酰亚胺薄膜产业及技术发展报告[R]. 2020. [3]刘金刚, 何民辉, 范 琳, 等. 先进电子封装中的聚酰亚胺树脂[J], 半导体技术, 2003, (10):37-41. [4]Maier G. Polymers for microelectronics[J], Mater. Today (Oxford, U.K.), 2001, 4(5):22-23. [5]Ree M. High performance polyimides for applications in microelectronics and flat panel displays[J]. Macromol. Res, 2006, 14(1): 1-33. [6]路庆华, 郑 风. 光电功能聚酰亚胺材料及器件[M]// 北京: 科学出版社, 2020. [7]Bai L, Zhai L, He M, et al. Thermal Expansion Behavior of Poly(amide-imide) Films with Ultrahigh Tensile Strength and Ultralow CTE[J]. Chin. J. Polym. Sci. 2020, 38: 748-758. [8]Liang E, Sun Q, Yuan H, et al. Negative thermal expansion: Mechanisms and materials[J]. Front. Phys, 2021, 16(5): 53302. [9]Ishige R, Tanaka K, Ando S. In Situ Analysis of Chain Orientation Behavior in Thin Film Aromatic Polyimides by Variable Temperature pMAIRS during Thermal Imidization[J]. Macromol. Chem. Phys, 2018, 219(3): 1700370. [10]Slonimskii G L, Askadskii A A, Kitaigorodskii A I. The Packing of polymer molecules[J], Polym. Sci. U.S.S.R. 1970, 12 (3): 556-577. [11]Arnold F E, Shen D, Lee C J, et al. Organo-soluble segmented rigid-rod polyimide films. Part 4.-Anisotropic structure and properties[J]. J. Mater. Chem, 1993, 3(4): 353-360. [12]Zhang Z M, Button G L, Powell F R. Infrared Refractive Index and Extinction Coefficient of Polyimide Films[J]. Int. J. Thermophys, 1998, 19, 905-916. [13]Tong H M, Saenger K L, Su G W. Thickness-direction thermal expansion of polyimide films[J]. Polym. Eng. Sci, 1993, 33(22): 1502-1506. [14]Zuo H, Qian G, Li H, et al. Reduced coefficient of linear thermal expansion for colorless and transparent polyimide by introducing rigid-rod amide units: synthesis and properties[J]. Polym Chem, 2022, 13(20): 2999-3008. [15]Xiao P, He X, Ye C, et al. Tailoring the microporosity and gas separation property of soluble polybenzoxazole membranes derived from different regioisomer monomers[J]. Sep Purif Tech, 2023, 311: 123340. [16]Lian M, Zheng F, Meng F, et al. Comparison of Homo-Polyimide Films Derived from Two Isomeric Bis-Benzimidazole Diamines[J]. Molecules, 2023, 28(13): 4889. [17]Tan J, Wang Q, Liu Y, et al. Synthesis, gas barrier and thermal properties of polyimide containing rigid planar fluorene moieties[J]. J Macromol Sci. A, 2018, 55(1): 75-84. [18]Byun T, Kim S J, Kim S Y,. Soluble and transparent poly(amide-imide)s with ultra-low coefficients of thermal expansion[J]. Polymer, 2022, 247: 124813. [19]Cao L, Wen Y, Fang X, et al. Synthesis of highly thermoplastic polyamide-imides with high transparency and low coefficient of thermal expansion[J]. Polymer, 2023, 282: 126093. [20]Sun Q, Feng Y, Guo J, et al. Achieving both low thermal expansion and low birefringence for polyimides by regulating chain structures[J]. Eur Polym J, 2023, 189: 111986. [21]任小龙, 李立严. 电子行业用特种聚酰亚胺薄膜研究进展[C]// 第十六届中国覆铜板技术•市场研讨会论文集. 2015, 143-155. [22] Wu G, Qi S, Tian G, et al. Preparation and characterization of low CTE thermoplastic copolyimide resins based on the structural design of block sequence[J]. Eur. Polym. J, 2023, 195: 112249. [23]Bao F, Qi F, Lei H, et al. Near-Zero Thermal Expansion and High Heat-Resistance Polyimide Films Based on a Symmetric and Rigid Pyrazine Structure[J]. ACS Appl. Polym. Mater, 2023, 5(1): 672-679. [24]张明艳, 等. 共聚低热膨胀聚酰亚胺薄膜的制备与表征[J]. 材料工程, 2019, 47(5): 153-158. [25]Wang Y, Liu X, Shen J, et al. Synthesis of a Novel Rigid Semi-Alicyclic Dianhydride and Its Copolymerized Transparent Polyimide Films’ Properties[J]. Polymers, 2022, 14: 4132. [26]陈思扬, 陈志豪, 陈广泽, 等. 含咪唑基团的聚酰亚胺薄膜的制备及性能[J]. 高分子材料科学与工程, 2023, 39(08): 26-31. [27]Chen H, Dai F, Hu M, et al. Heat-resistant polyimides with low CTE and water absorption through hydrogen bonding interactions[J]. J Polym Sci, 2021, 59(17): 1942-1951. [28]Bai L, Zhai L, He M, et al. Preparation of heat-resistant poly(amide-imide) films with ultralow coefficients of thermal expansion for optoelectronic application[J]. React. Funct. Polym, 2019, 141: 155-164. [29] Numata S, Fujisaki K, Kinjoet N. Re-examination of the relationship between packing coefficient and thermal expansion coefficient for aromatic polyimides[J]. Polymer, 1987, 28(13): 2282-2288. [30]Luo L, Dai Y, Yuan Y, et al. Control of Head/Tail Isomeric Structure in Polyimide and Isomerism-Derived Difference in Molecular Packing and Properties[J]. Macromol. Rapid Commun, 2017, 38(23), 1700404. [31]Zhuang Y, Liu X, Gu Y, et al. Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers[J]. Polym. Chem, 2012, 3(6), 1517-1525. [32]Luo F, Lin C, Jiao L, et al. High glass transition temperature and ultra-low thermal expansion coefficient polyimide films containing rigid pyridine and bisbenzoxazole units[J]. J. Polym. Sci, 2023, 61(13): 1289-1297. [33]Jiao L, Zhang Y, Du Z, et al. Ultra-high Tg and ultra-low coefficient of thermal expansion polyimide films based on hydrogen bond interaction[J]. J. Polym. Sci, 2022, 60(16): 2454-2464. [34]Li D, Li D, Ke Z, et al. Synthesis of colorless polyimides with high Tg and low coefficient of thermal expansion from benzimidazole diamine containing biamide[J]. J. Polym. Sci, 2023, 61(9): 818-828. [35]Yang Z, Ma P, Li F, et al. Ultrahigh thermal-stability polyimides with low CTE and required flexibility by formation of hydrogen bonds between poly(amic acid)s[J]. Eur. Polym. J, 2021, 148(48): 110369. [36]Chen T, He X, Lu Q. Comprehensive Performance of Polyimide Reinforced by Multiple Hydrogen Bonds for Flexible Electronics Application[J]. ACS Appl. Polym. Mater, 2023, 5(7): 5436-5444. [37]Jiang S, Bi Z, Wang J, et al. Construction of novel Cu-α-diimide interactions for enhancing thermal resistance and dimensional stability of polyimide films[J]. J. Mater. Res. & Tech, 2023, 25: 1920-1930. [38]Iredale R J, Ward C, Hamerton I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides[J]. Prog.Polym. Sci, 2017, 69: 1-21. [39]T.T. Serafini, P. Delvigs, G.R. Lightsey, Thermally stable polyimides from solutions of monomeric reactants[J], J. Appl. Polym. Sci., 1972, 16(4): 905-915. [40]Hergenrother P M, Smith J G. Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides[J]. Polymer, 1994, 35(22): 4857-4864. [41]Takeichi T, Agag T. High Performance Polybenzoxazines as Novel Thermosets[J]. High Perform. Polym, 2006, 18(5):777-797. [42]Kirchhoff R A, Chudov K A, Demin D Y, et al. Benzocyclobutenes in polymer synthesis[J]. Prog.Polym. Sci, 1993, 18(1): 85-185. [43]Wang H, Wang Z, Kuang N, et al. Sulphur-containing phenylethynyl terminated polyimide via chemical crosslinking method for excellent thermal properties and antibacterial performance[J]. React. Funct.Polym, 2023, 186: 105550. [44]罗龙波, 叶信合, 易江, 等. 通过交联抑制高温下氢键的解离提高聚酰亚胺的耐热性和尺寸稳定性[J]. 高分子学报, 2021,52(4): 363-370. [45]Zhang X, Zhang B, Liu C, et al. Effect on the thermal resistance and thermal decomposition properties of thermally cross-linkable polyimide films obtained from a reactive acetylene[J]. React. Funct.Polym, 2021, 167: 104994. [46]Jiao L, Luo F, Du Z, et al. Ultra-high Tg and ultra-low CTE polyimide films based on tunable interchain crosslinking[J]. React. Funct.Polym, 2022, 181: 105449. [47]Hang F, Xiu T, Wang C, et al. Low-dielectric polyimide constructed by integrated strategy containing main-chain and crosslinking network engineering[J]. Polymer, 2023, 279 (20): 126035 [48]Wang Y, Zhou J, Hou J, et al. High-Performance Polyimides with High Tg and Excellent Dimensional Stability at High Temperature Prepared via a Cooperative Action of Hydrogen-Bond Interaction and Cross-Linking Reaction[J]. ACS Appl. Polym. Mater, 2019, 1(8): 2099-2107. [49]Hasegawa M, Tokunaga R, Hashimoto K, et al. Crosslinkable polyimides obtained from a reactive diamine and the effect of crosslinking on the thermal properties[J]. React. Funct.Polym, 2019, 139: 181-188. [50]Tian Y, Luo L, Yang Q, et al. Construction of stable hydrogen bonds at high temperature for preparation of polyimide films with ultralow coefficient of thermal expansion and high Tg[J]. Polymer, 2019, 188(1): 122100. [51]Zhang X, Han C, Liang T, et al. Preparation and Properties of Polyimide Films Derived from Hexaazatriphenylene- hexacarboxylic Acid Trianhydride[J]. Mater. Today Commun, 2022, 33: 104003. [52]李洁, 张旭. 填充改性聚酰亚胺的研究进展[J]. 精细与专用化学品, 2017, 25(10): 46-49. [53]Lu C, Lin F, Shao H, et al. Carboxylated Carbon Nanotube/ Polyimide Films with Low Thermal Expansion Coefficient and Excellent Mechanical Properties[J]. Polymers, 2022, 14(21): 4565. [54]王克杰, 陆诚, 邵慧奇, 等. 碳纳米管对聚酰亚胺同质复合膜热膨胀系数的影响[J]. 复合材料科学与工程, 2022, 02: 62-67. [55]Zhao W, Xu Y, Song C, et al. Polyimide/mica hybrid films with low coefficient of thermal expansion and low dielectric constant[J]. e-Polymers, 2019, 19(1): 181-189. [56]Ou X, Lu X, Chen S, et al. Thermal conductive hybrid polyimide with ultrahigh heat resistance, excellent mechanical properties and low coefficient of thermal expansion[J]. Eur. Polym. J, 2020, 122: 109368. [57]Ou X, Chen S, Lu X, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Compos.Commun, 2021, 23: 100549. [58]Tai M H, Tseng I H, Chiang J C, et al. Flexible Polyimide Films Hybrid with Functionalized Boron Nitride and Graphene Oxide Simultaneously To Improve Thermal Conduction and Dimensional Stability[J]. Acs Appl. Mater. &Interfaces, 2014, 6(11): 8639-8645. [59]Sensui N, Ishii J, Takata A, et al. Ultra-Low CTE and Improved Toughness of PMDA/PDA Polyimide-based Molecular Composites Containing Asymmetric BPDA-type Polyimides[J]. High Perform. Polym, 2009, 21(6):709-728. [60]Matsuura T, Yamada N, Nishi N, et al. Polyimides derived from 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides[J]. Macromolecules, 1993, 26(3):419-423. [61]Wang Z H, Chen X, Yang H, et al. The In-plane Orientation and Thermal Mechanical Properties of the Chemically Imidized Polyimide Films[J]. Chin. J. Polym. Sci, 2018, 37: 268-278. [62]Wang C O, Zhai L, Mo S, et al. Effect of Aggregation Structure on Thermal Expansion Behavior of Polyimide Films with Different Thickness[J]. Chin. J. Polym. Sci, 2022, 40(12): 1651-1661. [63]吴培熙,王祖玉. 塑料制品生产工艺手册[M]// 北京: 化学工业出版社, 1991. [64]Hu J, Li R, Chen C, et al. New insights into mechanism of negative in-plane CTE based on bio-based adenine-containing polyimide film[J]. Polymer, 2018, 146: 133-141. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号