Position:Home >> Abstract

Preparation of pervaporation composite membrane based on interfacial reaction and study of its desalination performance
Authors: CHEN Yin, LIN Liping, HE Xinping, WU Dongyun, GUO Jiaxin,YI Chunhai
Units: College of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
KeyWords: interfacial reaction, pervaporation, composite membrane, desalination
ClassificationCode:TQ 028.8
year,volume(issue):pagination: 2024,44(4):75-84

Abstract:
 Polyvinyl alcohol (PVA) is widely used in desalination membrane materials due to its outstanding hydrophilicity. However, its high hydroxyl content can lead to excessive swelling, thereby affecting membrane separation performance. In this study, we propose a novel method for interfacial crosslinking of ethylene alcohol-ethylene amine copolymers (VA-co-VAm), which contain both amino and hydroxyl groups. A reaction takes place between the amino-rich VA-co-VAm and the hydroxyl-rich epigallocatechin gallate (EGCG) under alkaline conditions, resulting in a crosslinked structure. By adjusting the film-forming parameters, such as deposition time and reaction concentration of the copolymer and EGCG, we can precisely control the structure of the composite membrane. Various analytical techniques, including scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), were used to investigate the microstructure and physicochemical properties of the modified composite membrane. Experimental results demonstrate that the modified composite membrane exhibits excellent pervaporation performance, with the ability to process 35 g/L NaCl saltwater at a rate of 33.19 kg/(m2 h), while maintaining a salt rejection rate exceeding 99.99%. Furthermore, the composite membrane demonstrates remarkable desalination performance across different temperatures and saltwater concentrations. Particularly, at 70 °C, the water flux reaches 37.7 kg/(m2 h). Composite membranes prepared through interfacial reactions display exceptional desalination capabilities, offering a novel solution for efficient seawater desalination and presenting significant prospects in the field of wastewater treatment.

Funds:
陕西省自然科学基金项目(2023-JC-ZD-26)

AuthorIntro:
陈茵(1999-),女,陕西韩城人,硕士研究生,email:chenyin9909@163.com

Reference:
 [1] 张翔, 王继文, 赵相山, 等. 国产纳滤膜用于苦咸水脱盐制备饮用水[J]. 膜科学与技术, 2020, 40(4):87-91.
[2] Li L, Hou J, Ye Y, et al. Composite PVA/PVDF pervaporation membrane for concentrated brine desalination: Salt rejection, membrane fouling and defect control[J]. Desalination, 2017, (422):49-58.
[3] Aoyama S, Nagasawa H, Kanezashi M, et al. Nanogradient hydrophilic/hydrophobic organosilica membranes developed by atmospheric-pressure plasma to enhance pervaporation performance[J]. ACS nano, 2022, 16(7):10302-10313.
[4] Lin Y F, Fang Y X, Xu Z L, et al. SUZ-4 zeolite interlayer enhanced thin-film composite pervaporation membrane for ethanol dehydration[J]. Sep Purif Technol, 2023, 314: 2-11.
[5] 吴昊, 李治康, 伍艳辉. 改性氧化石墨烯-PEBA混合基质膜对苯酚/水的渗透汽化分离性能[J]. 膜科学与技术, 2021, 41(6):153-161.
[6] Xu Y X, Chen C X, Zhang P X, et al. Pervaporation properties of polyimide membranes for separation of ethanol + water mixtures[J]. J Chem Eng Data, 2006, 51(5):1841-1845. 
[7] Wojciech O, Katarzyna K, Tiara P, et al. Unlocking complex chemical and morphological transformations during thermal treatment of O-hydroxyl-substituted polyimide of intrinsic microporosity: Impact on ethanol/cyclohexane separation[J]. J Membr Sci, 2023, 684:121881.
[8] Meng J, Zhao P, Cao B, et al. Fabricating thin-film composite membranes for pervaporation desalination via photo-crosslinking[J]. Desalination, 2021, 512:115128.
[9] Wang S N, Huang Z, Wang J T, et al. PVA/UiO-66 mixed matrix membranes for n-butanol dehydration via pervaporation and effect of ethanol[J]. Sep Purif Technol, 2023, 313(15):123487. 
[10] Meng J, Lau C H, Xue Y, et al. Compatibilizing hydrophilic and hydrophobic polymers via spray coating for desalination[J]. J Mater Chem A, 2020, 8(17):8462-8468.
[11] Liang B, Li Q, Cao B, et al. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes[J]. Desalination, 2018, 433: 132-140.
[12] Sano L L, Krueger A M, Landrum P F. Chronic toxicity of glutaraldehyde: differential sensitivity of three freshwater organisms[J]. Aquatic Toxicology, 2005, 71(3):283-296.
[13] Chen X, Li Y, Qiu Y L, et al. Amino carboxymethyl chitosan//dialdehyde starch/polyvinyl alcohol double-layer film loaded with ε-polylysine[J]. Food Chem, 2023, 428:136775.
[14] Tamás T, Mohamed M A, ?ukasz L, et al. Facile modification of hydroxyl group containing macromolecules provides autonomously self-healing polymers through the formation of dynamic Schiff base linkages[J]. Eur Polym J, 2022, 168:111086.
[15] Tan J, de Bruijn W J C, van Zadelhoff A, et al. Browning of epicatechin (EC) and epigallocatechin (EGC) by auto-oxidation[J]. J Agric Food Chem, 2020, 68(47): 13879-13877.
[16] 唐安琪, 路景驭, 冯炜林, 等. 界面交联制备聚多巴胺复合纳滤膜的性能调控[J]. 高分子学报, 2018, (12):1524-1531.
[17] Lee F, Chung J E, Xu K, et al. Injectable Degradation-resistant hyaluronic acid hydrogels cross-linked via the oxidative coupling of green tea catechin[J]. ACS Macro Lett, 2015, 4(9): 862-1061.
[18] Chu C, Deng J, Man Y, et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Biomater Adv, 2017, 78: 258-294.
[19] Yong H M, Xu F F, Yun D W, et al. Antioxidant packaging films developed by in-situ cross-linking chitosan with dialdehyde starch-catechin conjugates[J]. Int J Biol Macromol, 2022, 222:3203-3014. 
[20] Fu J W, Pan H W, An M Z, et al. Controllable cross-linking of VA-co-VAm/PAN composite membranes for efficient pervaporation desalination under extreme pH conditions[J]. J Appl Polym Sci, 2023, 140(23):e53928.
[21] Gurianov K E, Eliseev A A, Brotsman V A, et al. Pervaporation desalination with graphene oxide membranes: The influence of cation type and loading[J]. Desalination, 2022, 547:116238.
[22] Shen J, Zhang R, Su Y, et al. Polydopamine-modulated covalent organic framework membranes for molecular separation†[J]. J Mater Chem A, 2019, (30):18063-18071.
[23] Li M, Wang J, Zhou S, et al. Polyacrylonitrile-supported self-aggregation crosslinked poly (vinyl alcohol) pervaporation membranes for ethanol dehydration[J]. Eur Polym J, 2020, 122: 109359.
[24] Cui K, Li P, Zhang R, et al. Preparation of pervaporation membranes by interfacial polymerization for acid wastewater purification[J]. Chem Eng Res Des, 2020, 156:171-179.
[25] Pham X M, Nguyen N T, Bui T V, et al. Enhanced desalination performance and arsenate removal using semi-aromatic polyamide-based pervaporation membranes by modifying with amino-acids via interfacial polymerization[J]. J Appl Polym Sci, 2023, 141(1):e54749. 
[26] Tseng C, Liu Y L. Poly (vinyl alcohol)/carbon nanotube (CNT) membranes for pervaporation dehydration: The effect of functionalization agents for CNT on pervaporation performance[J]. J Membr Sci, 2022, 668:121185. 
[27] Pham M X, Le T M, Tran T T, et al. Fabrication and characterization of polyamide thin-film composite membrane via interfacial polycondensation for pervaporation separation of salt and arsenic from water[J]. RSC Adv, 2021, 11(63):39657-39665.
[28] Zeng H Z, Liu S J, Wang J, et al. Hydrophilic SPEEK/PES composite membrane for pervaporation desalination[J]. Sep Purif Technol, 2020, 250:117265. 
[29] Zeng H, Liu S, Wang J, et al. Hydrophilic SPEEK/PES composite membrane for pervaporation desalination[J]. Sep Purif Technol, 2020, 250; 117265.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号