Research on integrated ceramic membrane technology for recycling of mined water in underground coal mine |
Authors: TONG Yujia,LIU Guijuan,LI Jiayao,JI Hongjun,HU Zhiping,BAI Lijun,MA Ruijun,LI Weixing |
Units: 1. College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China;2. NJTU Membrane Application Institute Co.,Ltd, Nanjing 211800, China;3.Shaanxi Coal and Chemical Industry Group Longhua Mining Co.,Ltd, Yulin 719314, China |
KeyWords: mine water; water treatment; reclaimed water |
ClassificationCode:TQ028; X703.1 |
year,volume(issue):pagination: 2024,44(4):96-104 |
Abstract: |
Water resource is an indispensable part of mine management and development. Efficient treatment of mine water can alleviate the problems of mine water shortage to a certain extent. This project proposes the process of underground ceramic membrane treatment of coal mine water for the first time, and its device design is compact and occupies 1/10 of the traditional process. The process of "coagulation sedimentation + sand filtration + ultrafiltration + reverse osmosis" and the process of "ceramic membrane filtration + reverse osmosis" were compared. The results show that the chemical oxygen demand (CODCr) concentration and NH3-N concentration are 7.2mg /L and 0.12mg /L respectively in the treatment of mine water by the integrated process of "ceramic membrane + reverse osmosis", which has a 100% removal effect on suspended solids (SS) and turbidity. Ceramic membrane direct filtration technology has shown a broad application prospect in the field of mine water treatment. |
Funds: |
AuthorIntro: |
童裕佳(1994-)江苏苏州人,博士研究生,从事水处理膜材料开发及工艺应用 |
Reference: |
[1] Wang T, Yang J, Jin D, et al. The hydrogeochemical characteristics and formation mechanism of high-fluoride mine water[J]. J Clean Prod, 2023, 430: 139671. [2] 尹尚先, 徐斌, 尹慧超, 等. 矿井水防治学科基本架构及内涵[J]. 煤炭科学技术, 2023, 51(7): 24−35. [3] 刘德民, 顾爱民, 闫凯迪. 基于水力学与水化学耦合的矿井涌(突)水水源识别方法研究 [J]. 煤炭工程, 2023, 55(1): 87−93. [4] Rey V, Ríos C A, Vargas L Y, et al. Use of natural zeolite-rich tuff and siliceous sand for mine water treatment from abandoned gold mine tailings[J]. J Geochem Explor, 2021, 220: 106660. [5] Dubuc J, Coudert L, Lefebvre O, et al. Electro-Fenton treatment of contaminated mine water to decrease thiosalts toxicity to daphnia magna[J]. Sci Total Environ, 2022, 835: 155323. [6] Tayná D F, Nancucheo I, et al. Comparison of two acidophilic sulfidogenic consortia for the treatment of acidic mine water[J]. Front Bioeng Biotechnol, 2022, 10: 1048412. [7] Ren J, Zheng L, Su Y, et al. Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations[J]. Chem Eng J, 2022, 445: 136778. [8] 魏姗姗. 煤矿矿井水处理站改造方案分析及实践[J]. 山西化工, 2023, 43(8):236−237+250. [9] Olvera-Vargas H, Dubuc J, Wang Z, et al. Electro-Fenton beyond the degradation of organics: treatment of thiosalts in contaminated mine water[J]. Environ Sci Technol, 2021, 55: 2564-2574. [10] 李福勤, 豆硕超, 高珊珊, 等. 多重混凝沉淀处理高悬浮物矿井水试验及应用[J]. 煤炭工程, 2023, 55(4): 102−106. [11] 刘浩. 无机陶瓷膜在煤矿矿井水处理站提标改造工程中的应用[J]. 净水技术, 2019, 38(S2): 55−59. [12] 党平, 赛世杰, 张娜, 等. 偏铝酸钠去除高盐废水中二氧化硅的试验研究[J]. 工业水处理, 2019, 39(7): 74−76. [13] 朱泽民, 刘晨. 超滤-反渗透双膜法在甘肃某矿井水处理中的应用[J]. 给水排水, 2019, 55(6):77−81. [14] 梁戈龙, 刘玲, 焦建军, 等. 基于“源-径-受体”的高盐水灌注对地下水环境影响预测评价 [J]. 煤炭工程, 2023, 55(S1): 155-161. [15] 郝如杰, 郑纪永, 朱成林, 等. 地下酸性矿井水治理工程设计及应用[J]. 煤炭工程, 2023, 55(4): 98−101. [16] 雷兆武, 孙京敏, 金泥沙, 等. 高矿化度矿井水井下利用处理实验与工艺研究[J]. 煤炭工程, 2023, 55(8): 78-83. [17] Hoagland, BethMosley, LukeRusso, TessKirby, et al. Arsenic sequestration in gold mine wastes under changing pH and experimental rewetting cycles[J]. Appl Geochemistry, 2021, 124: 104789. [18] Li Z, Wang H, Xi X, et al. Estimation of activation energy of desorption of n-hexanol from activated carbons by the TPD technique[J]. Adsorp Sci Technol, 2003, 21: 125−203. [19] 黄晓帆, 王雷, 朱跃钊. 陶瓷膜水处理技术应用与膜污染缓解研究进展[J]. 现代化工, 2023, 43(7): 55-58. [20] 张溪彧, 董书宁, 王锐, 等. 含悬浮物矿井水微絮凝——多级过滤工艺研究[J]. 水文地质工程地质, 2023, 50(5): 222−230. [21] Su B, Liu S, Deng L, et al. Monitoring direct current resistivity during coal mining process for underground water detection: An experimental case study[J]. Ieee T Geosci Remote., 2022, 60: 5915308. [22] Xu W, Yang H, Mao Q, et al. Removal of heavy metals from acid mine drainage by red mud–based geopolymer pervious concrete: Batch and long–term column studies[J]. Polymers, 2022, 14(24): 5355. [23] He X, Lei L. Optimizing methane recovery: Techno-economic feasibility analysis of N2-selective membranes for the enrichment of ventilation air methane[J]. Sep Purif Technol, 2021, 259: 118180. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号