Position:Home >> Abstract

Lifetime test and research of perfluorinated proton exchange membrane in fuel cell
Authors: ZHANG Ru, ZHOU Bin, CHEN Yi
Units: Shanghai SinoFuel Co., Ltd., Shanghai 201400,China
KeyWords: proton exchange membrane; fuel cell; stack; lifetime
ClassificationCode:TQ028;TM911
year,volume(issue):pagination: 2024,44(4):105-114

Abstract:
The lifetime is one of the major bottlenecks which limiting the fuel cells’ commercialization and promotion, and the lifetime of the key material proton exchange membrane is the main technical challenge. To investigate the performance and lifetime of domestic proton exchange membrane in fuel cell, the membrane electrode assembles (MEA) prepared from two types of PEMs were assembled into a stack of 20 single cells using an interpenetration assembly method, and a lifetime test of 6000 hours was conducted under simulated vehicle operating conditions. Analyzing the change in the voltage, the cell voltage distribution and polarization curve of the fuel cell with time under different operating conditions, and measuring the performance such as the sensitivity, impedance, electrochemical active surface area (ECSA) and hydrogen crossover current density. Then characterizing the PEM using infrared temperature measurement and scanning electron microscopy (SEM) before and after the life test to further clarify the mechanism of the performance degradation of the fuel cell stack. The results indicate that after 6000 hours of life cycle test, the polarization performance degradation rate of domestic proton exchange membrane at the rated current density point does not exceed 4%, which meets the technical requirements for commercialization of fuel cells.

Funds:
国家重点研发计划项目(2020YFB1505500、2020YFB1505505)。

AuthorIntro:
张茹(1985-),女,山西山西临汾人,硕士研究生,研究方向为燃料电池及关键部件和材料的测试评价方法。

Reference:
[1] 衣宝廉, 侯  明. 车用燃料电池耐久性的解决策略[J]. 汽车安全与节能学报, 2011, 2(2):91-100.
[2] 梁  潇, 许思传. 车用燃料电池耐久性的研究进展[J]. 中国科技博览, 2012(3):36-38.
[3] 周  伟, 何华东. 浅谈质子交换膜燃料电池耐久性的研究现状[J]. 科技信息, 2010, 26:522-523. 
[4] Lim C, Ghassemzadeh L, Hove F V, et al. Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells[J]. J Power Sources, 2014, 257:102-110.
[5] Huang H, Xu S, Zhou J, et al. Mitigation of chemical degradation in perfluorosulfonic acid proton exchange membrane using regenerable hindered amine functionalized carbon quantum dots[J]. J Membr Sci, 2021, 636:119614.
[6] 陆  鑫, 徐  麟, 邬敏忠, 等. 模拟车况下的质子交换膜燃料电池耐久性研究[J]. 电源技术, 2009, 33(3):178-181.
[7] 侯中军, 甘  全, 马由奇, 等. 客车用燃料电池发动机耐久性研究[J]. 机械工程学报, 2010, 46(6):39-43.
[8] 张雪霞, 高雨璇, 陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报, 2020, 55(2):417-427.
[9] 李  奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39(8):2365-2375.
[10] Cheng Y, Zerhouni N, Lu C. A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell[J]. Int J Hydrogen Energy, 2018, 43(27):12314-12327.
[11] 陈会翠, 裴普成. 车用质子交换膜燃料电池经济寿命的研究[J]. 汽车工程, 2015, 37(9):998-1004.
[12] 裴普成, 宋满存. 一种燃料电池剩余寿命预测方法[P]. 中国, CN103698709A, 2023-04-02.
[13] 王宇鹏, 马秋玉, 赵子亮, 等. 一种车用燃料电池使用寿命加速测试与分析方法[P]. 中国, CN108417868A, 2018-08-17.
[14] Sung L Y, Hwang B J, Hsuen K L, et al. Effects of anode air bleeding on the performance of CO-poisoned proton-exchange membrane fuel cells[J]. J Power Sources, 2010, 195(6):1630-1639.
[15] 戴丽萍, 熊俊俏, 刘海英. 杂质气体对质子交换膜燃料电池性能影响的研究进展[J]. 化工进展, 2013, 32(9):2068-2076. 
[16] 翁元明, 林  瑞, 唐文超, 等. 燃料电池堆单片电压一致性研究进展[J]. 电源技术, 2015, 39(1):199-202.
[17] Shao Y, Yin G, Gao Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. J Power Sources, 2007, 171(2):558-566.
[18] Zhang Y, Chen S, Wang Y, et al. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test[J]. J Power Sources, 2015, 273:62-69.
[19] Schwiebert K E, Raiford K G, Escobedo G, et al. Strategies for mitigation of PFSA polymer degradation in PEM fuel cells[J]. ECS Trans, 2006, 1(8):303-311.
[20] Kusoglu A, Karlsson A M, Santare M H, et al. Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle[J]. J Power Sources, 2006, 161(2):987-996.
[21] Kumagai M, Myung S T, Ichikawa T, et al. Evaluation of polymer electrolyte membrane fuel cells by electrochemical impedance spectroscopy under different operation conditions and corrosion[J]. J Power Sources, 2010, 195(17):5501-5507.
[22] Xie Z, Holdcroft S. Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes[J]. J Electroanal Chem, 2004, 568(1):247-260.
[23] Stevens D A, Dahn J R. Electrochemical characterization of the active surface in carbonsupported platinum electrocatalysts for PEM fuel cells[J]. J Electrochem Soc, 2003, 150(6):A770-A775.
[24] Lee K S, Lee B S, Yoo S J, et al. Development of a galvanostatic analysis technique as an insitu diagnostic tool for PEMFC single cells and stacks[J]. Int J Hydrogen Energy, 2012, 37(7):5891-5900.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号