Study on CO2/N2 separation performance of polyethyleneimine-modified polyamide thin-film composite reverse osmosis membrane |
Authors: CHEN Fangzheng, CUI Wanxiang, ZHUANG Linjia, ZHAO Kejun, WANG Jinjia,HUANG Hai, YU Sanchuan |
Units: 1. Zhejiang Zheneng Natural Gas Co., Ltd., Hangzhou 310008, China 2. School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China |
KeyWords: carbon dioxide; facilitated transport; polyethyleneimine; membrane separation |
ClassificationCode:TQ051.893 |
year,volume(issue):pagination: 2024,44(4):130-139 |
Abstract: |
Traditional carbon dioxide (CO2) separation membranes are subject to the "Trade-off" effect, which makes it difficult to realize the simultaneous improvement of permeability and separation selectivity. In this study, polyethyleneimine (PEI) was selected as amine-based carrier molecules and loaded onto the surface of commercial polyamide (PA) composite reverse osmosis membrane by electrostatic deposition to prepare composite PEI-PA membrane for the facilitated transport of CO2. The influences of membrane fabrication and separation process conditions on the CO2/N2 separation performance of the obtained PEI-PA membrane were systematically investigated. The study of membrane preparation showed that the CO2 permeability of the composite membrane increased with the concentration of PEI in a certain range. And the amine groups in the PEI modified layer had ideal transport activity of CO2 at the neutral pH. Under the optimal modification conditions (2.0% mass fraction of PEI with molecular mass of 1800 g/mol, pH=7), the CO2 permeability and CO2/N2 selectivity of the composite membrane could reach 96.9 GPU and 90.0, which were 37.8% and 22.4% higher than unmodified membranes, respectively. Separation performance test showed that the CO2 permeation increased with the pressure in a certain range. But it would approach saturation and become lower in growth proportion than N2, resulting in attenuation of the CO2 permeation ratio and CO2/N2 selectivity. Besides, the increase of gas temperature and flow rate significantly increased N2 permeation, resulting in selectivity decline. Above results verify the feasibility of transforming reverse osmosis membranes into CO2 separation membranes, which provides a reliable basis for industrial scale-up practice. |
Funds: |
浙江省“领雁计划”研发项目(2022C03048) |
AuthorIntro: |
陈方正(1974-), 男,浙江嵊州人,高级工程师,主要从事生物质燃气领域技术研究,E-mail: 453724668@qq.com |
Reference: |
[1] 胡道成, 王睿, 赵瑞,等. 二氧化碳捕集技术及适用场景分析[J]. 发电技术, 2023, 44(4):502-513. [2] 牟瑛, 张贤明, 陈欢,等. 我国多年来温室气体排放情况及对策研究[J]. 河南科技, 2021, 40(9):128-130. [3] Babu D J, He G, Hao J, et al. Restricting lattice flexibility in polycrystalline metal‐organic framework membranes for carbon capture[J]. Adv Mater, 2019, 31(28):1900855. [4] Ji Y, Zhang M, Guan K, et al. High-performance CO2 capture through polymer-based ultrathin membranes[J]. Adv Funct Mater, 2019, 29(33):1900735. [5] Song C, Liu Q, Deng S, et al. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges[J]. Renew Sust Energ Rev, 2019, 101:265-278. [6] Kadirkhan F, Goh P S, Ismail A F, et al. Recent advances of polymeric membranes in tackling plasticization and aging for practical industrial CO2/CH4 applications-a review[J]. Membranes, 2022, 12(1):12010071. [7] Ward W J, Robb W L. Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film[J]. Science, 1967, 156(3781):1481-1484. [8] He X, Lindbråthen A, Kim T J, et al. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas[J]. Int J Greenh Gas Con, 2017, 64:323-332. [9] Deng L, Kim T J, Hägg M B. PVA/PVAm blend FSC membrane for CO2-capture[J]. Desalination, 2006, 199(1-3):523-524. [10] Sun C, Dutta P K, Ho W S W. SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas[J]. J Membr Sci, 2017, 534:33-45. [11] 许家友. CO2膜分离过程的模拟及优化[D]. 天津: 天津大学, 2019. [12] Francisco G J, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation[J]. J Membr Sci, 2007, 303(1-2):54-63. [13] Matsuyama H, Terada A, Nakagawara T, et al. Facilitated transport of CO2 through polyethylenimine/ poly(vinyl alcohol) blend membrane[J]. J Membr Sci, 1999, 163(2):221-227. [14] Yun H J, Hong H, Lee J, et al. Chemical and structural properties of polyethyleneimine film coated on a SiO2 substrate in different concentrations[J]. Mater Trans, 2017, 55(5):801-805. [15] Ma C, Wang M, Wang Z, et al. Recent progress on thin film composite membranes for CO2 separation[J]. J CO2 Util, 2020, 42:101296. [16] Kim T J, Vrålstad H, Sandru M, et al. Separation performance of PVAm composite membrane for CO2 capture at various Ph levels[J]. J Membr Sci, 2013, 428:218-224. [17] 赵文瑛, 王丽香, 李振山,等. 不同胺基CO2固体吸收剂的热稳定性能[J]. 化工学报, 2012, 63(10):3304-3309. [18] Choi W, Park J, Kim C, et al. Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture[J]. Chem Eng J, 2020, 408:127289. [19] Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers[J]. Desalination, 2009, 242(1-3):168-182. [20] Singh P S, Rao A P, Ray P, et al. Techniques for characterization of polyamide thin film composite membranes[J]. Desalination, 2011, 282:78-86. [21] Liao J, Wang Z, Wang M, et al. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane[J]. J Membr Sci, 2016, 511:9-19. [22] Cihanoglu A, Altinkaya S A. A facile approach for preparation of positively charged nanofiltration membranes by in-situ crosslinking between polyamide-imide and polyethylenimine[J]. Sep Purif Technol, 2018, 207:353-362. [23] Xu J, Wang Z, Wang J, et al. Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting[J]. Desalination, 2015, 365:398-406. [24] Hamouda S B, Nguyen Q T, Langevin D, et al. Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes-structure and CO2 facilitated transport[J]. C R Chim, 2010, 13(3):372-379. [25] 杨东晓. 分离CO2固定载体膜传质机理及其膜过程模拟和优化研究[D]. 天津: 天津大学, 2009. [26] 张晨昕. 分离CO2膜传质机理及其过程模拟研究[D]. 天津: 天津大学, 2014. [27] Chen T Y, Ho W S W. Effects of pressure and temperature on CO2 facilitation of amino acid salt-containing membranes for post-combustion carbon capture[J]. J Membr Sci, 2024, 689:122166. [28] 蒋国梁, 冯献社, 朱葆琳. 气体膜分离过程中浓差极化的影响[J]. 膜科学与技术, 1989, 9(2):23-28. [29] 王志, 甄寒菲, 王世昌,等. 膜过程中防治膜污染强化渗透通量技术进展(Ⅰ)操作策略[J]. 膜科学与技术, 1999, 19(1):3-7+13. [30] 顾晓亮. 二氧化碳/甲烷混合气的膜分离性能研究[D]. 北京: 北京化工大学, 2011. [31] Sandru M, Haukebo S H, Hägg M B. Composite hollow fiber membranes for CO2 capture[J]. J Membrane Sci, 2010, 346(1):172-186. [32] Zhao Y, Ho W S W. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport[J]. J Membr Sci, 2012, 415-416:132-138. [33] Xu R, Wang Z, Wang M, et al. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation[J]. J Membr Sci, 2019, 573:455-464. [34] Jing S, Zhuan Y, Xue T Z, et al. CO2 separation membranes with high permeability and CO2/N2 selectivity prepared by electrostatic self-assembly of polyethylenimine on reverse osmosis membranes[J]. RSC Adv, 2017, 7(24):14678-14687. [35] He Y, Wang Z, Dong S, et al. Polymeric composite membrane fabricated by 2-aminoterephthalic acid chemically cross-linked polyvinylamine for CO2 separation under high temperature[J]. J Membr Sci, 2016, 518:60-71. [36] Prasad B, Mandal B. CO2 separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane[J]. J Appl Polym Sci, 2017, 134(34):45206. [37] Yu M, Dai Y, Yang K, et al. TEA incorporated CS blend composite membrane for high CO2 separation performance[J]. RSC Adv, 2016, 6(32):27016-27019. [38] Wang Y, Li L, Zhang X, et al. Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation[J]. J Membr Sci, 2020, 599:117828. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号