Position:Home >> Abstract

Coupled contamination of mine water on PES ultrafiltration membranes analyzed by XDLVO theory
Authors: WEN Xin,HAI Yuyan,HE Can,MA Rui,XIONG Rihua,LIU Shuqin
Units: 1National Institute of Clean-and-Low-Carbon Energy, Beijing 102200,China;2China University of Mining & Technology(Beijing), Beijing 100083,China
KeyWords: mine water; membrane fouling; humic acid; inorganic salt; XDLVO theory;
ClassificationCode:TQ028
year,volume(issue):pagination: 2024,44(4):147-156

Abstract:
Membrane fouling is the main problem that limits the development of membrane technology. The coupled organic (humic acid)-inorganic salt contamination behavior of PES ultrafiltration membranes in the treatment of mine water was investigated using the XDLVO (Extended-Derjaguin-Landau-Verway-Overbeek) theory, it was found that inorganic salt ions could exacerbate the contamination behavior between humic acid solutions and membranes, with increasing salt ionic concentrations, the attractive force provided by van der Waals forces between contaminants gradually rising and the repulsive force provided by polar and bilayer forces gradually decreasing, exacerbating membrane contamination;Among them, Ca2+ had the greatest effect of influence, Mg2+ is the second, and Na+ had the least effect. At the same time, two different hydrophilic PES ultrafiltration membranes were selected to analyze the contamination behavior from multiple perspectives by evaluating the interfacial interaction energy between the membranes and mine water contaminants, it is found that the forces that change their interfacial interaction energy are mainly polar forces, with van der Waals and double layer forces playing a very minor role,It indicates that the polar force plays a decisive role in the membrane's anti-pollution property, and the magnitude of the polar force is related to the hydrophilic groups on the membrane surface, proving that the hydrophilicity of the membrane surface affects the anti-pollution property of ultrafiltration membranes by influencing the polar force and then the anti-pollution property of the membranes.
 

Funds:
国家能源集团项目(GJNY-21-90, CF9300200024);

AuthorIntro:
文欣(1993-),女,陕西铜川人,工程师,博士研究生,研究方向为膜分离新技术,E-mail:20084078@chnenergy.com.cn。

Reference:
 [1]顾大钊, 李庭, 李井峰, 等. 我国煤矿矿井水处理技术现状与展望 [J].煤炭科学技术, 2021, 49 (1): 11-18. 
[2]武强. 废弃矿井水资源开发利用战略研究[M]. 科学出版社,2020.
[3]龙涛, 王珍, 杨玮, 等. 高矿化度矿井水脱盐技术应用现状及研究进展 [J]. 水处理技术, 2023, 49 (5): 11-16.
[4]郑利祥, 郭中权, 毛维东, 等. 矿井水处理聚合氯化铝残留物对超滤膜污染的影响 [J]. 中国给水排水, 2021, 37 (1): 51-56.
[5]张宏乐, 骆祥波, 赵子通,等. 华北煤田不同矿井水中溶解性有机物荧光特征对比研究-以东滩煤矿为例 [J]. 煤炭加工与综合利用, 2023, (11): 79-84. 
[6]申渝,毛鑫,申静, 等. 改性微生物絮凝剂在污水处理过程中的应用及膜污染缓解机制 [J]. 中国环境科学, 2023, 43 (3): 1142-1151. 
[7]唐玉兰, 孙先源, 周东锐,等. 聚偏氟乙烯超滤膜抗污染改性材料研究进展 [J]. 环境污染与防治, 2023, 45 (11): 1574-1582. 
[8]刘淑永, 王丹, 王庆吉,等. 膜蒸馏处理炼油化工高含盐废水的膜污染及控制研究进展 [J]. 现代化工, 2023, 43 (10): 79-83.
[9]张彤, 郑雯佳, 王巧英,等. 蛭石改性PVDF超滤膜的污染行为模型解析 [J]. 环境工程学报, 2023, 17 (11): 3611-3617.
[10]丁梓尧, 方凡, 辛佳期,等. 藻菌体系胞外聚合物对超滤膜污染影响机制研究 [J]. 膜科学与技术, 2022, 42 (3): 51-59. 
[11]袁梓屹, 李芸妃, 李天玉,等. 天然水背景下残余铝组分分析及其对纳滤膜污染的贡献 [J]. 膜科学与技术, 2021, 41 (6): 10-17.
[12]Li C, Sun W J , Lu Z D , et al, Ceramic nanocomposite membranes and membrane fouling: A review [J], Water Res., 2020, 175: 115674.
[13]Guo S J, Li J F, Ren J, et al, Membrane fouling of raw coking wastewater in membrane distillation: Identification of fouling potential of hydrophilic and hydrophobic components [J], Desalination, 2022, 539:115936.
[14]苗瑞, 葛瑞飞, 王宇鹏, 等. 臭氧预处理蛋白质对聚醚砜超滤膜污染行为的影响研究 [J]. 膜科学与技术, 2022, 42 (1): 121-128. 
[15]Tan Y Z , Krantz W B. Effect of humic-acid fouling on membrane distillation [J], J Membr Sci, 2016, 504: 263-273.
[16]王可, 樊华, 侯得印, 等. XDLVO理论解析有机物在膜蒸馏过程中的膜污染行为机制 [J]. 膜科学与技术, 2022, 42 (2): 25-33. 
[17]朱亮, 丁颖, 姜龙杰, 等. XDLVO理论在膜蒸馏有机污染机理研究中的进展 [J]. 水处理技术, 2022, 48 (2): 23-28. 
[18]王蝶,王小洋,陈曦, 等. 碳纳米管界面改性超滤膜的抗污机理解析 [J]. 中国环境科学, 2022, 42 (4): 1618-1624. 
[19]寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论解析膜法水处理过程中膜污染问题的研究 [J]. 膜科学与技术, 2017, 37 (1): 8-15. 
[20]Wu H H , Shen F, Wang J F , Wan Y H, et al. Membrane fouling in vacuum membrane distillation for ionic liquid recycling: Interaction energy analysis with the XDLVO approach[J]. J Membr Sci, 2018, 3(550): 436-447.
[21]Li R J , Lou Y , Xu Y C ,et al. Effects of surface morphology on alginate adhesion: Molecular insights into membrane fouling based on XDLVO and DFT analysis [J]. Chemosphere, 2019, 10(233): 373-380.
[22]Zhang B, Tang H L , Huang D M, et al. Effect of pH on anionic polyacrylamide adhesion: New insights into membrane fouling based on XDLVO analysis [J]. J Mol Liq, 2020, 320:114463.
[23]Zhao Z Y , Koenraad Muylaert, Anthony Szymczyk, et al. Harvesting microalgal biomass using negatively charged polysulfone patterned membranes: Influence of pattern shapes and mechanism of fouling mitigation[J].  Water Res, 2021,188:116530.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号