Position:Home >> Abstract

Preparation and properties of amphiphilic polyacrylate
based ultrafiltration membranes
Authors: JIANG Yani1, ZHAO Zihao1, SU Qianwei1, ZHU Liheng1, TIAN Hua 1, XUE Yunyun2, DU Bin1,2, QIAN Jiacheng2, WANG Jianyu2, LING Jun1, ZHU Baoku1,2
Units: 1. Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Zhejiang University, Hangzhou 310058, China; 2. Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
KeyWords: polyacrylate copolymer; amphiphilic copolymer; carboxyl group; ultrafiltration membranes; anti-fouling
ClassificationCode:TQ051.893
year,volume(issue):pagination: 2024,44(5):32-39

Abstract:
In order to develop an environmentally friendly and highperformance water treatment ultrafiltration membrane materials, the amphiphilic copolymers, poly (methyl methacrylate-co-butyl acrylate-co-methacrylic acid) (P(MMA-co-BA-co-MAA), PMBM), only containing only C, H and O elements were designed and synthesized in this research. The ultrafiltration membranes of PMBMs were prepared via typical non-solvent-induced phase separation (NIPS) process. It is found that suspension polymerization is an effective method to synthesize PMBMs, and the PMBMs can be prepared into ultrafiltration membrane with good pore structure. The carboxyl group in PMBMs can endow the membranes with good hydrophilicity and antifouling property. The performance of PMBM membrane with different carboxyl group content can vary obviously at different pH condition. The membrane of PMBM11 containing 11% (mass fraction) MAA performed a pure water flux of 1 310 L/(m2·h·MPa), a BSA retention rate of 98%, and a flux recovery rate (FRR) of 79% after BSA contamination. 
 

Funds:
浙江省自然科学基金项目(LD22E030006); 浙江大学基本科研业务费专项(226-2023-00057, 26-2023-00074, 2021FZZX003-02-09)

AuthorIntro:
蒋亚妮(1998-),女,浙江台州人,硕士生,主要从事聚合物微孔分离膜材料研究.*通讯作者,E-mail:zhubk@zju.edu.cn

Reference:
 
 
[1]Fane A G, Wang R, Hu M X. Synthetic membranes for water purification: Status and future\[J\]. Angew Chem Int Ed, 2015, 54(11): 3368-3386.
\[2\]贾旭莹,Matindi N C, 崔振宇, 等. 反应控制相转化法制备PVDF/SMAgPEG共混超滤膜及性能研究\[J\]. 膜科学与技术, 2023, 43(5): 74-82.
\[3\]Chen X Q, Li T Y, Yan L L et al. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oilwater separation\[J\]. Sci Adv, 2023, 9(34): eadh8195.
\[4\]Xie W, Li T, Tiraferri A, et al. Toward the next generation of sustainable membranes from green chemistry principles\[J\]. ACS Sustainable Chem Eng, 2021, 9(1): 50-75.
\[5\]Issaoui M, Jellali S, Zorpas A A, et al. Membrane technology for sustainable water resources management: Challenges and future projections\[J\]. Sustain Chem Pharm, 2022, 25: 100590.
\[6\]Yang B, Yang X, Liu B, et al. PVDF blended PVDFgPMAA pHresponsive membrane: Effect of additives and solvents on membrane properties and performance\[J\]. J Membr Sci, 2017, 541: 558-566.
\[7\]Fan K, Su J, Zeng Z, et al. Antifouling and protein separation of PVDFgPMAA@MnO2 filtration membrane with insitu grown MnO2 nanorods\[J\]. Chemosphere, 2022, 286: 131756.
\[8\]Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: Strategies and mechanisms\[J\]. Chem Soc Rev, 2016, 45(21): 5888-5924.
\[9\]Liu Q, Li Y, Wang H, et al. Phenolphthalein polyethersulfone bearing carboxyl groups: Synthesis and its separationmembrane applications\[J\]. High Perform Polym, 2021, 33(3): 245-254.
\[10\]Wang N, Wang T, Hu Y. Tailoring membrane surface properties and ultrafiltration performances via the selfassembly of polyethylene glycolblockpolysulfoneblockpolyethylene glycol block copolymer upon thermal and solvent annealing\[J\]. ACS Appl Mater, 2017, 9(36): 31018-31030.
\[11\]Pei Z C, Pei Y X, Wang Q R. Acrylonitrilemaleic anhydride copolymer membranes with different molecular weights\[J\]. J Appl Polym, 2002, 85(12): 2521-2527.
\[12\]Zheng J, Wang L, Hu Y, et al. Toughening effect of comonomer on acrylic denture base resin prepared via suspension copolymerization\[J\]. J Appl Polym, 2012, 123(4): 2406-2413.
\[13\]Fan K, Huang J, Yang H, et al. pH and thermal-dependent ultrafiltration membranes prepared from poly (methacrylic acid) grafted onto polyethersulfone synthesized by simultaneous irradiation in homogenous phase\[J\]. J Membr Sci, 2017, 543: 335-341.
\[14\]Mei L, Xie R, Yang C, et al. pHresponsive Caalginatebased capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction\[J\]. Chem Eng J, 2013, 232: 573-581.
\[15\]Sun X, Hu K, Wang K, et al. Hydrophilic surface modification of poly(methyl methacrylate)/poly(methyl methacrylatecoacrylic acid) composite film by surface activation\[J\]. Macromol Chem Phys, 2023, 225: 2300312.
\[16\]Montaudo M S, Montaudo G. Bivariate distribution in PMMA/PBA copolymers by combined SEC/NMR and SEC/MALDI measurements\[J\]. Macromolecules, 1999, 32(21): 7015-7022.
\[17\]Lyu J, Muhammad N, Lan J, et al. Pore structure regulation and continuous preparation with VNIPS process of membranes for bioseparation\[J\]. Sep Purif Technol, 2024, 334: 125936.
\[18\]Huang C F, Chang F C. Comparison of hydrogen bonding interaction between PMMA/PMAA blends and PMMAcoPMAA copolymers\[J\]. Polymer, 2003, 44(10): 2965-2974.
\[19\]Kumar R, Ismail A F. Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge\[J\]. J Appl Polym, 2015, 132(21):42042.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号