Preparation of KAUST-8 membranes by hydrothermal secondary growth method for H2/CO2 separation |
Authors: Asad Sharif, WANG Hongbo, LU Jinming, YANG Jianhua,LIU Yi |
Units: State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, Dalian University of Technology |
KeyWords: CO2 separation; KAUST-8 membranes; fluorinated MOF membranes; hydrothermal synthesis; H2 purification |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2024,44(5):90-99 |
Abstract: |
KAUST-8 nanosheets exhibit high surface area and pore volume, leading to exceptional CO2 adsorption due to Al metal sites. In this study, polycrystalline KAUST-8 membranes were developed using a hydrothermal secondary growth technique on coarse microporous α-Al2O3 tube supports, employing aluminum oxide and nickel nitrate precursors. Al2O3 was to control the growth of inorganic pillar [AlF5(H2O)]2- and Ni(NO3)2·6H2O for its enhanced solubility of precursor nickel sources, to form Ni(Ⅱ)-pyrazine square grids which reacted with the pillar to grow KAUST-8 crystals. Additionally, water was used as a solvent to promote membrane growth. Moreover, the synthesis conditions of reactant concentration, time, temperature, and effects of solvents were explored. The resulting optimized KAUST-8 membrane demonstrated H2 permeance rate of 1.27×10-7 mol/(m2·s·Pa) (at 25 ℃ and 0.1 MPa) and ideal selectivity of H2/CO2 of 19.3. |
Funds: |
国家自然科学基金项目(21776031, 22378044) |
AuthorIntro: |
Asad Sharif(1995-),男,巴基斯坦人,硕士生,从事MOF膜的制备与应用.*通讯作者,E-mail:ljinming@dlut.edu.cn |
Reference: |
[1]Sholl D S, Lively R P. Seven chemical separations to change the world [J]. Nature, 2016, 532(7600): 435-437. [2]Dziejarski B, Krzyzyńska R, Andersson K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment [J]. Fuel, 2023, 342: 127776. [3] Awwad M, Bilal M, Sajid M, et al. MOF-based membranes for oil/water separation: Status, challenges, and prospects[J]. J Environ Chem Eng, 2023, 11(1): 109073. [4]Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chem Soc Rev, 2014, 43(16): 5415-5418. [5] Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. [6]Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295(5554): 469-472. [7]Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. [8]Ma S, Zhou H C. Gas storage in porous metal-organic frameworks for clean energy applications [J]. Chem Commun, 2010, 46(1): 44-53. [9]Chakraborty G, Park I H, Medishetty R, et al. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications [J]. Chem Rev, 2021, 121(7): 3751-3891. [10]Song Y, Sun Y, Du D, et al. Fabrication of c-oriented ultrathin TCPP-derived 2D MOF membrane for precise molecular sieving [J]. J Membr Sci, 2021, 634: 119393. [11]Pan Y, Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chem Commun, 2011, 47(37): 10275-10277. [12]Wei R, Chi H Y, Li X, et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation[J]. Adv Funct Mater, 2020, 30(7): 1907089. [13]Moon J D, Freeman B D, Hawker C J, et al. Can self-assembly address the permeability/selectivity trade-offs in polymer membranes?[J]. ACS Publ, 2020, 53: 5649-5654. [14]Hao J, Babu D J, Liu Q, et al. Synthesis of high-performance polycrystalline metal-organic framework membranes at room temperature in a few minutes[J]. J Mater Chem A, 2020, 8(16): 7633-7640. [15]Liu Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous and Mesoporous Mater, 2009, 118(1): 296-301. [16]Jeazet H B T, Staudt C, Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation [J]. Dalton Trans, 2012, 41(46): 14003-14027. [17]Cadiau A, Belmabkhout Y, Adil K, et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration [J]. Science, 2017, 356(6339): 731-735. [18]Lyu J, Zhou X, Yang J, et al. In-situ synthesis of KAUST-7 membranes from fluorinated molecular building block for H2/CO2 separation[J]. J Membr Sci, 2022, 658: 120585. [19]Tchalala M, Bhatt P, Chappanda K, et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air [J]. Nat Commun, 2019, 10(1): 1328. [20]Georgiadis A G, Charisiou N, Yentekakis I V, et al. Hydrogen sulfide (H2S) removal via MOFs[J]. Materials, 2020, 13(16): 3640. [21]Datta S J, Mayoral A, Murthy S B N, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087. [22]Hou R, Wang S, Wang L, et al. Enhanced CO2 separation performance by incorporating KAUST-8 nanosheets into crosslinked poly (ethylene oxide) membrane[J]. Sep Purif Technol, 2023, 309: 123057. [23]Zhou S, Shekhah O, Jin T, et al. A CO2-recognition metal-organic framework membrane for continuous carbon capture[J]. Chem, 2023, 9(5): 1182-1194. [24]Huang A, Bux H, Steinbach F, et al. Molecular‐sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3‐aminopropyltriethoxysilane as covalent linker [J]. Angew Chem Int Ed, 2010, 29(49): 4958-4961. [25]Zhou S, Zou X, Sun F, et al. Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation [J]. J Mater Chem, 2012, 22(20): 10322-10328. [26]Nian P, Cao Y, Li Y, et al. Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H2 separation[J]. Cryst Eng Comm, 2018, 20(17): 2440-2448. [27]Liu J, Liu C, Huang A. Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on α-Al2O3 tubes through covalent modification for hydrogen separation[J]. Int J Hydro Energy, 2020, 45(1): 703-711. [28]Lyu J, Cui Y, Yang J, et al. Inorganic pillar center-facilitated counterdiffusion synthesis for highly H2 perm-selective KAUST-7 membranes[J]. ACS Appl Mater Interfaces, 2022, 14(3): 4297-4306. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号