Position:Home >> Abstract

Preparation and properties of highflux poly(mphenylene isophthalamide) ultrafiltration membranes
Authors: LIU Chunbo1, 3, LIU Wei2, XU Ruisong3, TANG Shiyun1,ZHAO Wei1, ZHU Zhiyang1, HE Pei1, YOU Boyan4, FENG Xin1,ZHANG Ran3, HOU Mengjie3, LI Lin3, WANG Tonghua3
Units: 1. Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industry Co., Ltd.,2. Hongta Tobacco Co., Ltd., Yuxi Cigarette Factory Roll Pack a Workshop,3. State Key Laboratory of Fine Chemicals, Dalin Key Laboratory of Membrane and Membrane Process, School of Chemical Engineering, Dalian University of Technology,4. Fushun City Food Inspection and Testing Institute
KeyWords: ultrafiltration membrane; aromatic polyamide; poly(m-phenylene isophthalamide); additives; pore structure adjustment
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2024,44(5):100-107

Abstract:
 In this work, ultrafiltration membranes derived from poly(m-phenylene isophthalamide) (PMIA) were prepared using L-S phase inversion method with H2O and CaCl2 used as mixed additives. The effects of H2O and CaCl2 concentrations on the pore structure, porosity, water flux, and dextran retention performance of the ultrafiltration membranes were investigated, respectively. Results showed that the introduction of an appropriate amount of H2O as a cosolvent can enhance the CaCl2 solubility in the DMAc solvent, and reduce the exchange rate between solvent and non-solvent and delay phase separation, resulting in the formation of more developed sponge-like pores and straight finger-like pore structures and membranes with high porosity, high water flux and dextran retention rate. Similarly, adding an appropriate amount of CaCl2 to the casting solution can increase the thermodynamic stability of solution and also delay phase separation, since the ion-dipole interaction may disrupt the hydrogen bonds between PMIA molecules. With adding  10% (mass fraction)  H2O and 4% CaCl2, the porosity of the prepared PMIA ultrafiltration membrane was as high as 73.7%, the pure water flux was 16 970 L/(m2·h·MPa), and the retention rate of 150 000 glucan and BSA were 90.5% and 98.9%, respectively. The prepared PMIA ultrafiltration membranes show a good application prospect.

Funds:
云南省“兴滇英才支持计划”产业创新人才项目和云南中烟科技项目(2021JC04)

AuthorIntro:
刘春波(1978-),男,内蒙古赤峰人,副研究员,硕士,研究方向为纳米材料与膜材料.*通讯作者,冯欣,E-mail:3835732@qq.com; 李琳,E-mail:lilin121@dlut.edu.cn

Reference:
 [1]邓麦村, 金万勤. 膜技术手册\[M\]//北京: 化学工业出版社, 2020.
\[2\]Zeman. Microfiltration and ultrafiltration\[M\]//Taylor and Francis, 2017.
\[3\]Staszak K, Wieszczycka K, Tylkowski B. Membrane technologies:From academia to industry\[M\]//De Gruyter, 2022.
\[4\]Kamal A, Makhatova A, Yergali B, et al. Biological treatment, advanced oxidation and membrane separation for landfill leachate treatment: A review\[J\]. Sustainability, 2022, 14(21): 14427.
\[5\]Ma C, Huang H, Gu J, et al. Polymer separation membrane materials and their research progress\[J\]. Mater Rev, 2016, 30(5):144-150.
\[6\]Zhang Z, Wang S, Chen H, et al. Preparation of polyamide membranes with improved chlorine resistance by bis2,6N,N(2hydroxyethyl) diaminotoluene and trimesoyl chloride\[J\]. Desalination, 2013, 331(24): 16-25.
\[7\]Huang J, Zhang K. The high flux poly(mphenylene isophthalamide) nanofiltration membrane for dye purification and desalination\[J\]. Desalination. 2011, 282: 19-26.
\[8\]司会芳. 芳香族聚酰胺耐溶剂纳滤膜的制备及性能研究\[D\].大连:大连理工大学, 2018.
\[9\]司会芳, 李琳, 杨文华, 等. 聚间苯二甲酰间苯二胺超滤膜的制备与性能研究\[J\]. 膜科学与技术, 2018, 38(4): 49-55.
\[10\]张冉, 王磊, 司会芳,等. PA/PMIA复合纳滤膜的制备及性能研究\[J\]. 膜科学与技术, 2023, 43(4): 129-135.
\[11\]Wang T, Zhao C, Li P, et al. Effect of nonsolvent additives on the morphology and separation performance of poly(mphenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane\[J\]. Desalination. 2015, 365: 293-307.
\[12\]Lin C, Wang J, Zhou M, et al. Poly(mphenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivitypermeability tradeoff for ultrafiltration membranes\[J\]. J Membr Sci, 2016, 518: 72-78.
\[13\]Chen M, Xiao C, Wang C, et al. Studies on structure and properties of poly(mphenylene isophthalamide) hollow fiber membranes\[J\]. Acta Polym Sin, 2016(4): 428-435.
\[14\]Vetrivel S, Rana D, Sri Abirami S M S, et al. Cellulose acetate nanocomposite ultrafiltration membranes tailored with hydrous manganese dioxide nanoparticles for water treatment applications\[J\]. Polym Adv Technol, 2019, 30(8): 1943-1950.
\[15\]Jiang L, Yun J, Wang Y, et al. High-flux, antifouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms\[J\]. J Membr Sci, 2020, 596: 117743.
\[16\]Khan S A, Rehan Z A, Alharthi S S, et al. Polyethersulphone coated AgSiO2 nanoparticles: A multifunctional and ultrafiltration membrane with improved performance\[J\]. Desalin Water Treat, 2021, 239: 217-227.
\[17\]Wen X, He C, Hai Y, et al. Fabrication of a hybrid ultrafiltration membrane based on MoS2 modified with  dopamine and polyethyleneimine\[J\]. RSC Adv, 2021, 11(42): 26391-26402.
\[18\]Jiang Q, Zhang K. Preparation and characterization of highflux poly(m-phenylene isophthalamide) (PMIA) hollow fiber ultrafiltration membrane\[J\]. Desalin Water Treat, 2019, 138: 80-90.
\[19\]Karunakaran M, Nunes S P, Qiu X, et al. Isoporous PSbPEO ultrafiltration membranes via selfassembly and water-induced phase separation\[J\]. J Membr Sci, 2014, 453: 471-477.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号