Simulation study on the influence of aeration on the gas-liquid flow regime in membrane bioreactors |
Authors: CHEN Xiaohuan1,2, LIU Mingyan1,2, TU Qianqian1,2, LI Jiacheng3, LIN Peifeng3, YU Sanchuan3 |
Units: 1. China Tiegong Investment & Construction Group Co., Ltd., 2. Eco-Environmental Research and Development Center of China Railway Group Limited |
KeyWords: membrane bioreactor (MBR); near membrane surface; bubble flow; flow regime; aeration |
ClassificationCode:TQ028.3 |
year,volume(issue):pagination: 2024,44(5):125-134 |
Abstract: |
In this study, the flow patterns of membrane bioreactor (MBR) under different aeration models were simulated. Porous media model was adopted to simulate permeable separation membrane and multisized bubble flow within MBR was predicted by Population Balance Model (PBM). The effects of permeate sidesuction, bubble diameter and aeration velocity on the flow regime, and the impact of nearmembrane bubble flow on the membrane surface scouring effect were systematically analyzed. The results show that, for bubble flows distanced from the membrane surface, smaller bubbles promote the mixing of gas and liquid phases within membrane reactor. Under the permeate sidesuction pressure of -2 000 Pa, the void fraction decreased by 16% with increasing bubble diameter from 0.1 to 3.0 mm, while the void fraction peak value increased by 12% with increasing aeration velocity from 0.5 to 1.5 m/s. The circulation center of liquid flow gradually moves closer to membrane surface when the aeration orifice approaches membrane surface. For bubble flows near membrane surface, the membrane shear stress increases from 1.92 to 4.87 Pa when the bubble diameter decreases from 3.0 to 1.0 mm under the suction pressure of 0 Pa. The membrane shear velocity and stress increase from 0.02 to 0.22 m/s and 1.97 to 3.83 Pa, respectively, when the aeration velocity increasing from 0.5 to 1.5 m/s. The average membrane shear stress under the suction pressure of -3 000 Pa is 1.85 times as high as that under 0 Pa under the aeration velocity of 0.5 m/s. High suction negative pressure with high-speed aeration of small bubbles is beneficial for enhanced membrane shear stress. The research results will provide guide and basis for the design and optimization of aeration processes in MBR. ? |
Funds: |
国家重点研发计划项目(2023YFC3208000); 浙江省“领雁计划”研发项目(2022C01091) |
AuthorIntro: |
陈小欢(1982-), 男,江西樟树人,高级工程师,主要从事生态环境领域技术研究.*通讯作者, E-mail:yuschn@163.com |
Reference: |
[1]Nikolay M. Assessment of wastewater treatment plant upgrading with MBR implementation\[J\]. Membranes,2023, 13(8): 746. \[2\]公言飞,刘鹏,郅立鹏. 膜生物反应器(MBR)研究现状及发展趋势\[J\].中国资源综合利用,2021, 39(3): 90-93. \[3\]Zhang J, Xiao K, Liu Z W, et al. Large-scale membrane bioreactors for industrial wastewater treatment in china: Technical and economic features driving forces, and perspectives\[J\]. Engineering, 2021, 7(6): 868- 880. \[4\]樊吉霖, 刘洪波, 薛祝缘, 等. 基于人工神经网络的MBR膜污染研究现状\[J\]. 膜科学与技术, 2021, 41(4): 154-159. \[5\]李云东,刘波, 孙雁,等.超声波技术在MBR膜污染控制领域的应用及研究\[J\].膜科学与技术, 2021, 41(1): 468-179. \[6\]Kim J W, Bae E J, Park H, et al. Membrane reciprocation and quorum quenching: An innovative combination for fouling control and energy saving in membrane bioreactors\[J\]. Water Res, 2024, 250: 121035. \[7\]Shen L, Wu Q, Ye Q, et al. Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics\[J\]. Water Res, 2023, 243: 120353. \[8\]印霞棐, 李秀芬, 华兆哲,等.电场控制MBR膜污染技术研究进展\[J\]. 膜科学与技术, 2020, 40(2): 127-135. \[9\]Yang M, Yu D, Liu M, et al. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design\[J\]. Biores Technol, 2017, 227: 102-111. \[10\]徐玲君, 陈刚, 邵建斌, 等, 单个气泡静水中上升特性的数值模拟\[J\]. 沈阳农业大学学报, 2012, 43(3): 357-361. \[11\]赵杰, 唐湛旗, 孙姣, 等. 垂直壁面对上升气泡运动特性影响的实验研究\[C\]. 中国力学学大会. 上海, 2015: 177. \[12\]De Vries A W G, Biesheuvel A, Van Wijngaarden L. Notes on the path and wake of a gas bubble rising in pure water\[J\]. Inter J Multiphase Flow, 2002, 28(11): 1823-1835. \[13\]Saffman P G. On the rise of small air bubbles in water\[J\]. J Fluid Mechan, 1956, 1(3): 249-275. \[14\]Fukuma M, Muroyama K, Yasunishi A. Properties of bubbles swarm in a slurry bubble column\[J\]. J Chem Eng Jpn,1987, 20(1): 28-33. \[15\]Saxena S C, Rao N S, Saxena A C. Heat-transfer and gas-holdup studies in a bubble column: Airwaterglass bead system\[J\]. Chem Eng Commun, 1990, 96(1): 31-55. \[16\]Yang G, Guo K, Wang T. Numerical simulation of the bubble column at elevated pressure with a CFDPBM coupled model\[J\]. Chem Eng Sci, 2017, 170: 251-262. \[17\]Suga K, Matsumura Y, Ashitaka Y, et al. Effects of wall permeability on turbulence\[J\] . Inter J Heat Fluid Flow, 2010, 31:974-984. \[18\]高炜帆. 导流网角度对反渗透膜元件内部定常流动的影响\[J\]. 浙江理工大学学报,2022,47(1): 44-50. \[19\]Wang T, Wang J, Jin Y. Population balance model for gasliquid flows: Influence of bubble coalescence and breakup models\[J\]. Ind Eng Chem Res, 2005, 44: 7540-7549. \[20\]周靖.曝气池内气液流态的实验分析和数值模拟\[J\]. 西安文理学院学报(自然科学版) , 2018, 21(5): 9-12. \[21\]Cano-Lozano J C, Martinez-Bazan C, Magnaudet J, et al. Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability\[J\]. Phys Rev Fluids, 2016, 1(5): 53604. \[22\]Zhang K, Li Y, Chen Q. Numerical study on the rising motion of bubbles near the wall\[J\]. Appl Sci, 2021, 11(22): 10918. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号