Study on the process of PVDF membrane condensation treatment of ammonia containing humid gas |
Authors: LONG Susu1,2, ZHOU Yue1,2, WANG Zhaohui1, 2, CUI Zhaoliang1,2 |
Units: 1. State Key Laboratory of MaterialsOriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University 2. National Engineering Research Center for Special Separation Membrane, Nanjing Tech University |
KeyWords: membrane condensation; polyvinylidene fluoride; water recovery rate; ammonia containing humid gas |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2024,44(5):135-141 |
Abstract: |
This study investigates the process of treating ammonia-laden moist gas using the membrane condensation (MC) method. Based on a self-constructed laboratory-scale apparatus, different pore sizes of commercially available polyvinylidene fluoride (PVDF) membranes were selected to examine the effects of inlet gas pollutant concentration, inlet gas flow, inlet gas temperature, temperature difference across the membrane surface (ΔT), and membrane pore size on water recovery performance and the NH3-N content in the condensate. The results indicate that the feed gas flow rate of 1.0 L/min, pollutant concentration of 400 mg/L, feed temperature of 50 ℃, and ΔT of 20 ℃ can achieve higher water recovery performance with condensate containing lower levels of pollutants. |
Funds: |
国家自然科学基金项目(22078146) |
AuthorIntro: |
龙苏苏(1999-),女,重庆梁平人,硕士生,研究方向为材料与化工.*通讯作者,E-mail:zcui@njtech.edu.cn |
Reference: |
[1]Ma S, Chai J, Jiao K, et al. Environmental influence and countermeasures for high humidity flue gas discharging from power plants\[J\]. Renew Sust Energ Rev, 2017, 73: 225-235. \[2\]Fan L, Qin W T, Xia J, et al. Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China\[J\]. J Environ Sci, 2019, 12(86): 15-23. \[3\]郭彦鹏, 潘丹萍, 杨林军. 湿法烟气脱硫中石膏雨的形成及其控制措施\[J\]. 中国电力, 2014, 3(47): 152-155. \[4\]Che D, Liu Y, Gao C. Evaluation of retrofitting a conventional natural gas fired boiler into a condensing boiler\[J\]. Energy Convers Manag, 2004, 45(20): 3251-3266. \[5\]Zhong W, Ji W, Cao X, et al. Flue gas water recovery by indirect cooling technology for largescale applications: A review\[J\]. J Thermal Sci, 2020, 29(5): 1223-1241. \[6\]Barabash P, Solomakha A, Sereda V. Experimental investigation of heat and mass transfer characteristics in direct contact exchanger\[J\]. Int J Heat Mass Transfer, 2020, 162:120359. \[7\]吕月霞, 于新海, 涂善东. 膜气吸收法分离烟气中CO2的实验\[J\]. 南京工业大学学报(自然科学版), 2009, 31(5): 96-101. \[8\]Macedonio F, Brunetti A, Barbieri G, et al. Membrane condenser configurations for water recovery from waste gases\[J\]. Sep Purif Technol, 2017, 181: 60-68. \[9\]Yun S H, Ingole P G, Kim K H, et al. Properties and performances of polymer composite membranes correlated with monomer and polydopamine for flue gas dehydration by water vapor permeation\[J\]. Chem Eng J, 2014, 258: 348-356. \[10\]Li Z, Zhang H, Chen H, et al. Experimental research on the heat transfer and water recovery performance of transport membrane condenser \[J\]. Appl Thermal Eng, 2019, 160:114060. \[11\]Pan J, Chen K, Cui Z, et al. Preparation of ECTFE porous membrane for dehumidification of gaseous streams through membrane condenser\[J\]. Membranes, 2022, 12(1):65. \[12\]Feng L, Zhai R, Zhao Y, et al. Integrated optimization of coal-fired power plant and CO2 capture system coupled with membrane condenser for recovering flue gas hydrothermal energy\[J\]. Energy Convers Manag, 2023, 278:116689. \[13\]Macedonio F, Brunetti A, Barbieri G, et al. Membrane condenser as a new technology for water recovery from humidified “waste” gaseous streams \[J\]. Ind Eng Chem Res, 2013, 52(3): 1160-1167. \[14\]周玥,时锦银,汪朝晖,等.多巴胺改性PVDF中空纤维内衬膜及其在A/OMBR过程中的抗污染效果\[J\].南京工业大学学报(自然科学版),2023,45(2):119-126. \[15\]Brunetti A, Santoro S, Macedonio F, et al. Waste gaseous streams: From environmental issue to source of water by using membrane condensers\[J\]. CleanSoil Air Water, 2014, 42(8): 1145-1153. \[16\]Wu Y T, Yang C X, Yuan X G. A theoretical study of the effect of surface thermal conductivity on heat transfer coefficient in dropwise condensation\[J\]. Numer Heat Trans Part AAppl, 2001, 40(2): 169-179. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号