Mass transfer and heat transfer behavior of ethanol-water vapor in vacuum condensation dephlegmator during pervaporation membrane process |
Authors: ZHANG Yin, WANG Dingding, LIU Jingyun, LIU Wenda, JIANG Haoji, HAN Lu, XIAO Zeyi, FAN Senqing |
Units: School of Chemical Engineering, Sichuan University |
KeyWords: pervaporation; ethanol-water vapor; vacuum dephlegmator; mass transfer; heat transfer |
ClassificationCode:TQ026.2 |
year,volume(issue):pagination: 2024,44(5):142-149 |
Abstract: |
Fractional condensation process was used to recover the permeate ethanolwater vapor downstream the pervaporation membrane under vacuum. The heat transfer and mass transfer behavior of the vacuum condensation dephlegmator was stressed. The effects of inlet vapor flow rate on the heat transfer coefficient and condensation behavior of the vacuum condensation dephlegmator were analyzed. When the inlet vapor flowing velocity was increased from 3.09 to 8.05 m/s, the heat transfer process was effectively intensified. The total heat transfer coefficient was increased from 37.06 to 145.27 W/(m2·K), with the vapor side condensing heat transfer coefficient also increasing from 55.81 to 544.60 W/(m2·K). At different flowing velocity, the proportion of thermal resistance in the heat transfer process varied. At low vapor flowing velocity, the vapor side thermal resistance was relatively high, reaching up to 82.99%. After the flow rate increased, the proportion of thermal resistance on the cooling medium side was increased, reaching up to 65.66%. With the increase in feed flowing velocity, the recovery proportion of ethanolwater vapor in the vacuum condensation dephlegmator was improved from 41.82% to 68.19%, with the ethanol recovery proportion increasing from 5.21% to 30.72%. The ethanol mass fraction in the first condensate was also increased from 3.45% to 10.66%. |
Funds: |
国家重点研发计划课题(2021YFC2101204);中央高校基本科研业务费(20822041B4013和2023SCU12080) |
AuthorIntro: |
张尹(1998-),男,四川凉山人,硕士生,研究方向为膜过程设备设计.*通讯作者,E-mail:fansenqing86@scu.edu.cn |
Reference: |
[1]Aditiya H B, Mahlia T M I,Chong W T, et al. Second generation bioethanol production: A critical review\[J\]. Renew Sust Energ Rev, 2016, 66:631-653. \[2\]Sánchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks\[J\]. Bioresource Technol, 2008, 99:5270-5295. \[3\]Cardona C A, Sánchez O J. Fuel ethanol production: Process design trends and integration opportunities\[J\]. Bioresource Technol, 2007, 98:2415-2457. \[4\]Cao Z Q,Xia C J, Jia W, et al. Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process\[J\]. J Membr Sci, 2020, 595:117485. \[5\]Jiang H J, Liu J Y, Liu W D, et al. Bioethanol production from cassava fermentation in pervaporation membrane bioreactor fed with high concentration sugar\[J\]. Fuel, 2024, 362:130744. \[6\]Qiu B Y, Wang Y Y, Fan S Q, et al. Ethanol mass transfer during pervaporation with PDMS membrane based on solution-diffusion model considering concentration polarization\[J\]. Sep Purif Technol, 2019, 220:276-282. \[7\]Zentou H, Abidin Z Z, Issa M A, et al. Developing an integrated mathematical model of fermentationpervaporation system for bioethanol production\[J\]. Chem Eng J, 2023, 473:145229. \[8\]O’Brien D J, Roth L H, McAloon A J. Ethanol production by continuous fermentationpervaporation: A preliminary economic analysis\[J\]. J Membr Sci, 2000, 166:105-111. \[9\]Cai D, Hu S, Chen C J, et al. Immobilized ethanol fermentation coupled to pervaporation with silicalite1/polydimethylsiloxane/polyvinylidene fluoride composite membrane\[J\]. Bioresource Technol, 2016, 220:124-131. \[10\]Fan S Q, Xiao Z Y, Li M H, et al. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production\[J\]. Appl Energ, 2016, 179:939-947. \[11\]Li J F, Zhou W C, Fan S Q, et al. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane\[J\]. Bioresource Technol, 2018, 268:708-714. \[12\]Fan S Q, Liu J F, Tang X Y, et al. Process operation performance of PDMS membrane pervaporation coupled with fermentation for efficient bioethanol production\[J\]. Chin J Chem Eng, 2019, 27:1339-1347. \[13\]Li L, Xiao Z Y, Tan S J, et al. Composite PDMS membrane with high flux for the separation of organics from water by pervaporation\[J\]. J Membrane Sci, 2004, 243:177-187. \[14\]耿少航, 党建军, 赵佳,等. 高压下含大比例不凝气体的水蒸气对流冷凝数值仿真\[J\]. 水下无人系统学报, 2021, 29:88-96. \[15\]Wang J S, Yan J J , Li Y, et al. Experimental investigation of marangoni condensation of ethanol-water mixture vapors on vertical tube\[J\]. Heat Mass Transfer, 2009, 45:1533-1541. \[16\]Lips S, Meyer J P. Twophase flow in inclined tubes with specific reference to condensation: A review\[J\]. Int J Multiphas Flow, 2011, 37:845-859. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号