Throttling cooling and heavy hydrocarbon contamination in membrane-based natural gas decarbonization process |
Authors: LI Lixin1,2, SONG Xizhi3, WANG Changchun2, CHE Ruxin1, YU Haijun2, WANG Lina2, LIU Jianhui2, XU Guohui2, KANG Guodong2, CAO Yiming2, JIE Xingming2 |
Units: 1. School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116023, China; 2. Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China; 3. School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 211816, China |
KeyWords: decarbonization of natural gas; polyimide membrane; Joule-Thomson effect; throttling colling; heavy hydrocarbon contamination |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2025,45(1):1-10 |
Abstract: |
In the process of membrane based natural gas decarbonization, a large amount of CO2 permeates from the high-pressure side to the low-pressure side, which will form the Joule-Thomson effect, and then leads to the occurrence of gas throttling permeation cooling phenomenon. Meantime, the heavy hydrocarbon components contained in it will cause varying degrees of contamination to the separation membrane due to the increase in concentration and the decrease in saturated vapor pressure caused by cooling. In extreme cases, it may even directly cause the membrane module to lose its separation performance. The experiment used self-made polyimide hollow fiber membrane modules to study the effects of different concentrations of CO2/N2 mixture, inlet pressure, and vent ratio on gas throttling permeation cooling law, and investigated the changes in membrane module separation performance of polyimide hollow fiber membranes under toluene and n-hexane contamination. The experimental results indicate that an increase in CO2 concentration, intake pressure, and venting ratio in the mixed gas will exacerbate the degree of temperature drop inside the membrane module. The gas permeation rate increases when the separation membrane is contaminated with toluene, and decreases when it is contaminated with n-hexane, but the gas selectivity decreases for both situation. High temperature vacuum treatment can eliminate the impact of contamination to some extent and partially restore the performance of the separation membrane. |
Funds: |
国家自然科学基金项目(22178333, 22178334); 大连市重点学科重大课题研究项目(2022JJ11CG006); 榆林中科洁净能源创新研究院能源革命科技专项联合基金项目(E411080316) |
AuthorIntro: |
李立鑫(2000-),男,辽宁大连人,硕士生,主要研究方向为膜分离技术. |
Reference: |
[1]高振宇, 赫曼求, 杨飞,等. “双碳”目标下中国天然气发展的分析与建议[J]. 油气与新能源, 2023, 35(4):7-11. [2]陈彦, 刘潇. “双碳”背景下中国海油天然气产业面临的挑战与发展建议[J]. 中国海上油气, 2022, 34(3):180-184. [3]天工. 《中国天然气发展报告(2021)》发布[J]. 天然气工业, 2021, 41(8):68. [4]严硕, 于海斌, 陈赞. 膜法脱除天然气中二氧化碳的工艺技术发展现状[J]. 无机盐工业, 2022, 54(5):38-46. [5]胡苏阳, 花亦怀, 李秋英,等. 天然气膜分离脱碳技术评述[J]. 石化技术, 2021, 28(5):54-55. [6]Omole I C, Adams R T, Miller S J, et al. Effects of CO2 on a high performance hollow-fiber membrane for natural gas purification[J]. Ind Eng Chem Res, 2010, 49(10): 4887-4896. [7]Baker R W, Low B T. Gas separation membrane materials: A perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. [8]罗双江, 白璐, 单玲珑,等. 膜法二氧化碳分离技术研究进展及展望[J]. 中国电机工程学报, 2021, 41(4):1209-1216. [9]Alghunaimi F, Ghanem B, Alaslai N, et al. Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading[J]. J Membr Sci, 2016, 520: 240-246. [10]Adewole J K, Ahmad A L. Polymeric membrane materials selection for high-pressure CO2 removal from natural gas[J]. J Polym Res, 2017, 24: 1-13. [11]Jie X, Duan C, Wang L, et al. Fabrication of an asymmetric 4, 4′-oxydiphthalic anhydride-2, 4, 6-trimethyl-1, 3-phenylenediamine/2, 6-diaminotoluene copolyimide hollow fiber membrane and its performance for CO2 separation[J]. Ind Eng Chem Res, 2014, 53(11): 4442-4452. [12]付越, 徐义恒, 段军,等. 海上天然气吸附净化脱CO2的动态穿透实验研究[J]. 石油化工高等学校学报, 2022, 35(4):26-32. [13]Ahmad F, Lau K K, Shariff A M, et al. The study of Joule Thompson effect for the removal of CO2 from natural gas by membrane process[J]. Int J Chem Environ Eng, 2012, 3(2): 115-118. [14]赵霄, 孟文惠, 宋鹏,等. 混合组分高压气体节流效应的理论及实验研究[J]. 节能, 2017, 36(5):18-21. [15]邓成香, 宋鹏云, 马爱琳. 干气密封的实际气体焦耳-汤姆逊效应分析[J]. 化工学报, 2016, 67(9):3833-3842. [16]郑成明, 郭昊, 刘向阳,等. 海上平台燃料气重烃脱除工艺研究[J]. 石化技术, 2018, 25(4):146-148. [17]贝鹏志.[NH2ebim][PF6]改性聚酰亚胺膜的制备及CO2/N2分离性能的研究[D].沈阳:沈阳工业大学, 2020. [18]王常春, 赵琦, 丛玉凤,等. 天然气膜法脱碳过程中节流降温行为的研究[J]. 膜科学与技术, 2023, 43(3):22-29. [19]吕红岩. 天然气膜法脱碳技术应用研究[J]. 石油和化工设备, 2018, 21(5):19-22. [20]Dal-Cin M, Darcovich K, Saimani S, et al. Gas separation transport modeling for PDMS coatings on PEI-PEG IPN membranes[J]. J Membr Sci, 2010, 361(1/2): 176-181. [21]张旭, 孟令鹏, 李培. 提高硅橡胶的粘附性制备多层复合膜[J]. 膜科学与技术, 2020, 40(6):37-43. [22]Nemestothy N, Bakonyi P, Lajtai-Szabó P, et al. The impact of various natural gas contaminant exposures on CO2/CH4 separation by a polyimide membrane[J]. Membranes, 2020, 10(11): 324. [23]俞娟, 蒋远媛, 王晓东,等. 高温热处理对聚酰亚胺前驱体凝胶膜性能的影响[J]. 材料工程, 2009(8):80-83. [24]Al-Juaied M, Koros W J. Performance of natural gas membranes in the presence of heavy hydrocarbons[J]. J Membr Sci, 2006, 274(1/2): 227-243. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号