Position:Home >> Abstract

Preparation and gas separation performance of Cu-Zn-Al
multi-metal oxides hybrid carbon membranes
Authors: LU Xinyuan1, ZHUANG Dianzheng2, ZHANG Bing1, JIANG Yuan1, WANG Tonghua3, SONG Enjun4
Units: 1. School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; 2. School of Chemical Equipment, Shenyang University of Technology, Liaoyang 111003, China; 3. School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; 4. Oxiran Holding Group Co., Ltd., Liaoyang 111003, China
KeyWords: polyimide; doping agent; carbon membranes; gas separation performance
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2025,45(1):40-47

Abstract:
Hybrid carbon membranes for gas separation were prepared by the processes of membrane formation and carbonization using polyimide as precursor and Cu-Zn-Al (CZA) multi-metal oxides as dopant. The thermal stability of the precursors, surface functional groups, microstructure, micromorphology, surface element distribution and pore structure of carbon membranes were characterized by the techniques of thermogravimetry, infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy spectroscopy and nitrogen adsorption analysis, respectively. The effect of the CZA content on the gas separation performance of carbon membranes was mainly investigated. The results showed that the introduction of CZA affected the thermal stability of the precursor to a certain extent and densified the microstructure of carbon membranes. The variation in changing the amount of CZA amount could effectively regulate the gas separation performance of the carbon membrane. The optimal separation performance of the prepared hybrid carbon membranes is achieved when the doping mass fraction of CZA was 0.1%, i.e., H2 and O2 permeabilities could correspondingly reach to 3 746.15  and 610.15 Barrer, together with the selectivity of H2/N2 and O2/N2 being 42.8 and 7.0, respectively. 
 

Funds:
国家自然科学基金项目(20906063); 辽宁省自然科学基金项目(2021-MS-238)

AuthorIntro:
陆新元(1996-),男,辽宁阜新人,硕士研究生,研究方向为气体分离炭膜及应用.

Reference:
[1]Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
[2]Liang C Z, Chung T S, Lai J Y. A review of polymeric composite membranes for gas separation and energy production[J]. Prog Polym Sci, 2019, 97:101141.
[3]Wang Y, Sheng L, Zhang X, et al. Hybrid carbon molecular sieve membranes having ordered Fe3O4@ZIF-8-derived microporous structure for gas separation[J]. J Membr Sci, 2023, 666: 121127.
[4]Guo C, Li M, Guo W, et al. Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming[J]. Chem Eng J, 2024, 486: 150331.
[5]Lu M P, Chen C W, Lu M Y. Charge-separation kinetics of photoexcited oxygen vacancies in ZnO nanowire field-effect transistors [J]. Phys Rev Appl, 2016, 6(5): 054018.
[6]Tsai T, Lu Y, Fang J, et al. Ultrasound assistance in the sensitization and activation of porous Al2O3 supports for improving the hydrogen separation of Pd/Al2O3 composite membranes[J]. Int J Hydrogen Energ, 2024, 55: 1007-1016.
[7]汪尔文, 张兵, 李欣明,等. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 256-260.
[8]Zhang B, Dang X, Wu Y, et al. Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts[J]. J Mater Res, 2014, 29(23): 2881-2890.
[9]侯旻辰, 李琳, 鲁云华,等. 石墨烯/聚酰亚胺炭膜的制备及其气体分离性能[J]. 新型炭材料, 2020, 35(6): 762-768.
[10]张兵, 江园, 吴永红,等. 高氢渗透分离性的沸石杂化支撑炭膜的制备[J]. 无机材料学报, 2016, 31(3): 257-262.
[11]Zhang B, Wu Y, Lu Y, et al. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide[J]. J Membr Sci, 2015, 474: 114-121.
[12]Butnaru I, Varganici C D, Pinteala M, et al. Thermal decomposition of polyimides containing phosphine-oxide units[J]. J Anal Appl Pyrolysis, 2018, 134: 254-264.
[13]Li C, Strachan A. Cohesive energy density and solubility parameter evolution during the curing of thermoset[J]. Polymer, 2018, 135: 162-170.
[14]Gholizadeh Z, Aliannezhadi M, Ghominejad M, et al. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method[J]. Sci Rep, 2023, 13(1): 6131.
[15]Gu J, Zhang X, Bai Y, et al. ZSM-5 filled polyether block amide membranes for separating EA from aqueous solution by pervaporation[J]. Int J Polym Sci, 2013, 2013: 1-10.
[16]Zhao J, Zhang G, Liu H, et al. Improved charge transfer and morphology on Ti-modified Cu/γ-Al2O3/Al catalyst enhance the activity for methanol steam reforming[J]. Int J Hydrogen Energ, 2022, 47(42): 18294-18304.
[17]Baydir E, Aras . The role of CO adsorption and CuO formation on the catalyst deactivation during the long-term performance evaluation of methanol steam reforming process for hydrogen production: Comparison of sono-coprecipitation and spray pyrolysis method [J]. Int J Hydrogen Energ, 2022, 47(91): 38594-38608.
[18]Jia X, Zhang H, Ren B, et al. Fe-Ni-Ce-Zr-modified CuO-ZnO catalyst for methanol steam reforming[J]. J Energ Inst, 2023, 110: 101316.
[19]Bagherzadeh S B, Haghighi M. Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming[J]. Energ Convers Manage, 2017, 142: 452-465.
[20]李欣明, 黄鹤鸣, 吴永红,等. NaY沸石杂化炭膜的制备及气体分离性能的研究[J]. 膜科学与技术, 2021, 41(3): 24-28.
[21]Yang C, Zhang B, Zhang S, et al. Highly permeable and selective sepiolite hybrid mixed matrix carbon membranes supported on plate carbon substrates for gas separation[J]. Chem Eng Res Des, 2021, 174: 319-330.
[22]Wang F, Zhang B, Liu S, et al. Investigation of the attapulgite hybrid carbon molecular sieving membranes for permanent gas separation[J]. Chem Eng Res Des, 2019, 151: 146-156.
[23]Zhang B, Yang C, Liu S, et al. The positive/negative effects of bentonite on O2/N2 permeation of carbon molecular sieving membranes [J]. Microporous  Mesoporous Mater, 2019, 285: 142-149.
[24]Xie W, Jiao Y, Cai Z, et al. Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure- and mixed-gas CO2/CH4 separation[J]. Sep Purif Technol, 2022, 282: 120091.
[25]Hu X, Lee W H, Bae J Y, et al. Thermally rearranged polybenzoxazole copolymers incorporating Trger’s base for high flux gas separation membranes[J]. J Membr Sci, 2020, 612: 118437.
[26]Kong J, Liu J, Jia P, et al. Synergistic effect of thermal crosslinking and thermal rearrangement on free volume and gas separation properties of 6FDA based polyimide membranes studied by positron annihilation[J]. J Membr Sci, 2022, 645: 120163.
[27]Yoshimune M, Fujiwara I, Suda H, et al. Gas transport properties of carbon molecular sieve membranes derived from metal containing sulfonated poly(phenylene oxide)[J]. Desalination, 2006, 193(1): 66-72.
[28]Lie J A, Hgg M B. Carbon membranes from cellulose and metal loaded cellulose[J]. Carbon, 2005, 43(12): 2600-2607.
[29]Guo F, Xiao W, Ma C, et al. Constructing gas transmission pathways in two-dimensional composite material ZIF-8@ BNNS mixed-matrix membranes to enhance CO2/N2 separation performance[J]. Membranes, 2023, 13(4): 444.
[30]Sabantina L, Rodríguez-Cano M , Klcker M, et al. Fixing PAN nanofiber mats during stabilization for carbonization and creating novel metal/carbon composites[J]. Polymers, 2018, 10(7): 735.
[31]Hou M, Li L, Song J, et al. Polyimide-derived carbon molecular sieve membranes for high-efficient hydrogen purification: The development of a novel phthalide-containing polyimide precursor[J]. Sep Purif Technol, 2022, 301: 121982.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号