Research on poly(lactic acid) nanofiber membrane for respiratory monitoring and PM0.3 filtration |
Authors: ZHANG Chuanjiu1, ZHU Guiying2, ZHANG Yifan2, Jiang Liang2, LI Jiaqi3, WANG Cunmin3, LI Xinyu3, SONG Xinyi3, ZHANG Mingming4, XU Huan2 |
Units: 1. Shendong Coal Group Co., Ltd., CHN Group, Yulin 719315, China; 2. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; 3. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; 4. China Academy of Safety Science and Technology, Beijing 100012, China |
KeyWords: polylactic acid nanofibers; electroactivity; air filtration; respiratory monitoring |
ClassificationCode:TB333 |
year,volume(issue):pagination: 2025,45(1):48-57 |
Abstract: |
An environmentally friendly nanofibrous membrane (NFM) with efficient respiratory protection performance was successfully prepared by coaxial electrospinning technique. The nanofibrous membrane used the PLA solution doped with dielectric zeolitic imidazolate framework-8 (ZIF-8) crystals as the shell layer, which enhanced the charge storage capacity and improved the inter-interfacial polarization effect of the nanofiber membrane. In addition, thanks to the structural design of the fiber morphology and the addition of ZIF-8, the nano-protruding structure formed on the fiber surface effectively alleviated the air resistance. The results showed that when the mass fraction of ZIF-8 in the shell solution was 4%, its surface potential and relative dielectric constant reached 3.9 kV and 1.64, respectively. At 32 L/min air flowrate, the removal efficiency of PM0.3 reached 97.99%, with a pressure drop of only 52.6 Pa, enabling effective PM0.3 filtration while keeping low air resistance. Additionally, the triboelectric nanogenerators composed of the prepared nanofibrous membrane was also able to realize the respiratory monitoring function. The unique design provided a new direction in the manufacture of high-performance air filters that combine respiratory protection and health monitoring functions. |
Funds: |
中国矿业大学研究生创新计划项目(2024WLJCRCZL276, 2024WLKXJ143, 2024WLKXJ140, 2024WLJCRCZL272, 2024WLJCRCZL195); 中央高校基本科研业务费专项资金(2024-10958, 2024-10967); 江苏省研究生科研与实践创新计划(SJCX24_1407, SJCX24_1403, KYCX24_2917, KYCX24_2914, KYCX24_2937); 国家重点研发计划(2023YFC3011704); 国家能源集团井工煤矿粉尘与职业病防治研究(六)煤矿粉尘防护装备研发(E210100285) |
AuthorIntro: |
张传玖(1983-),男,四川达州人,硕士,工程师,主要从事矿山压力与岩层控制以及煤矿安全生产现场管理工作 |
Reference: |
[1]吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020,71(S1):471-478. [2]袁凯, 仲兆祥, 邢卫红. 碳纳米管膜在空气净化领域的研究进展[J]. 膜科学与技术, 2021,41(4):138-146. [3]Zhang S, Liu H, Tang N, et al. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks[J]. Adv Mater, 2020,32(29):2002361. [4]Han W, Rao D, Gao H, et al. Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “kill two birds with one stone”[J]. Nano Energy, 2022,97:107237. [5]李小川, 唐梦珂, 朱金佗, 等. 界面立构复合化电活性聚乳酸纳纤膜的制备及高效过滤性能[J]. 高等学校化学学报, 2023,44(12):34-42. [6]Lou Y, Wang B, Ma J, et al. A versatile electrospun polylactic acid nanofiber membrane integrated with halloysite nanotubes for indoor air purification, disinfection, and photocatalytic degradation of pollutants[J]. Sep Purif Technol, 2023,323:124371. [7]Wang C, Song X, Li T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Appl Mater Inter, 2023,15(31):37580-37592. [8]Yang Y, Li X, Zhou Z, et al. Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter[J]. Nat Commun, 2024,15(1):1586. [9]Peng Z, Shi J, Xiao X, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration[J]. Nat Commun, 2022,13(1):7835. [10]Deng Y, Lu T, Zhang X, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. J Membrane Sci, 2022,660:120857. [11]Zhu G, Li X, Li X, et al. Nanopatterned electroactive polylactic acid nanofibrous MOFilters for efficient PM0.3 filtration and bacterial inhibition[J]. ACS Appl Mater Inter, 2023,15(40):47145-47157. [12]Li X, Zhu G, Tang M, et al. Biodegradable MOFilters for effective air filtration and sterilization by coupling MOF functionalization and mechanical polarization of fibrous poly(lactic acid)[J]. ACS Appl Mater Inter, 2023,15(22):26812-26823. [13]Yang Y, Yang Y, Huang J, et al. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency[J]. Adv Fiber Mater, 2023,5(4):1505-1518. [14]Fu Q, Liu Y, Liu T, et al. Air-permeable cellulosic triboelectric materials for self-powered healthcare products[J]. Nano Energy, 2022,102:107739. [15]Cai C, Liu Y, Li L, et al. Wet-resistant, dustproof, and germproof self-powered lignocellulosic triboelectric filters for respiratory protection, monitoring, and diagnosis[J]. Chem Eng J, 2023,476:146819. [16]Li Y, Yuan D, Geng Q, et al. MOF-embedded bifunctional composite nanofiber membranes with a tunable hierarchical structure for high-efficiency PM0.3 purification and oil/water separation[J]. ACS Appl Mater Inter, 2021,13(33):39831-39843. [17]钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020,37(7):1513-1521. [18]马俊梅, 薛旭平, 林明杰, 等. 具有原位生长ZIF-8中间修饰层的聚乙烯/聚酰胺复合正渗透膜的制备及性能研究[J]. 膜科学与技术, 2023,23(1):1-17. [19]冯孝权, 赵倩倩, 张亚涛. 基于ZIF-8固定载体复合膜的制备及CO2分离性能研究[J]. 膜科学与技术, 2021,41(4):35-41. [20]Jiang L, Zhu X, Li J, et al. Electroactive and breathable protective membranes by surface engineering of dielectric nanohybrids at poly(lactic acid) nanofibers with excellent self-sterilization and photothermal properties[J]. Sep Purif Technol, 2024,339:126708. [21]Ke L, Yang T, Liang C, et al. Electroactive, antibacterial, and biodegradable poly(lactic acid) nanofibrous air filters for healthcare[J]. ACS Appl Mater Inter, 2023,15(27):32463-32474. [22]He Y, Wang H, Sha Z, et al. Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals[J]. Nano Energy, 2022,98:107343. [23]Bian Y, Niu Z, Wang S, et al. Removal of size-dependent submicron particles using metal-organic framework-based nanofiber air filters[J]. ACS Appl Mater Inter, 2022,14(20):23570-23576. [24]Bian Y, Chen C, Wang R, et al. Effective removal of particles down to 15 nm using scalable metal-organic framework-based nanofiber filters[J]. Appl Mater Today, 2020,20:100653. [25]Bian Y, Wang R, Wang S, et al. Metal-organic framework-based nanofiber filters for effective indoor air quality control[J]. J Mater Chem A, 2018,6(32):15807-15814. [26]李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021,38(3):741-748. [27]Niu Z, Xiao C, Mo J, et al. Investigating the influence of metal-organic framework loading on the filtration performance of electrospun nanofiber air filters[J]. ACS Appl Mater Inter, 2022,14(23):27096-27106. [28]黄荣廷, 朱桂英, 李欣雨, 等. 电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能[J]. 高等学校化学学报, 2024,45(1):162-171. [29]Wang S, Zhao X, Yin X, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. ACS Appl Mater Inter, 2016,8(36):23985-23994. [30]Dai X, Li X, Wang X. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity[J]. Chem Eng J, 2018,338:82-91. [31]Guo J, Hanif A, Shang J, et al. PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5 capture[J]. Chem Eng J, 2021,405:126584. [32]Zhu M, Deng Y, Zheng Y, et al. Tribo-charge enhanced and cellulose based biodegradable nanofibrous membranes with highly fluffy structure for air filtration and self-powered respiration monitoring systems[J]. J Hazard Mater, 2024,468:133770. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号