Experimental study on the application of membrane integration process in PEM water electrolysis for hydrogen production |
Authors: WANG Xiaoli1, HUANG Pengfei1, CHEN Chen1, MA Zhenqiang2, WANG Shenghui1,3, JIANG Lidong3, LI Dongyang1 |
Units: 1. The Institute of Seawater Desalination and Multipurpose Utilization, MNR(Tianjin), Tianjin 300192, China; 2. Tianjin SDIC Jinneng Electricity Generating Co., Ltd., Tianjin 300480,China; 3. Tianjin Lanshizi Membrane Technology Co., Ltd., Tianjin 300192, China |
KeyWords: PEM water electrolysis for hydrogen production; high-quality fresh water; membrane integration process; energy recovery |
ClassificationCode:TQ051 |
year,volume(issue):pagination: 2025,45(1):92-100 |
Abstract: |
With the rapid development of the hydrogen energy industry, its water consumption will surge in the future. PEM electrolysis of water for hydrogen production is one of the most promising hydrogen production processes, which requires high-quality fresh water resources. Reverse osmosis seawater desalination, as an open-source incremental technology, is an important way to solve the shortage of fresh water resources. To alleviate the demand pressure for high-quality fresh water in electrolytic hydrogen production, this study compared the desalination treatment effects of different membrane integration processes and the presence or absence of energy recovery devices using seawater as raw water through a combination of membrane integration processes. The designed experimental device has a processing capacity of 40 m3/d, and the process mainly consists of medium filtration, three-stage reverse osmosis, and EDI, with an integrated design using a high-pressure pump energy recovery machine. The experimental results show that the conductivity of the produced water (25 ℃) is ≤ 0.1 mS/m, and the power consumption per ton of water is about 2.9 kW·h. Compared with no energy recovery, it can save 49% of energy consumption, forming a membrane integrated seawater desalination process suitable for PEM electrolysis water hydrogen production water, providing technical reference for seawater desalination in hydrogen production water. |
Funds: |
2023年国家(兵团)科技计划项目(2023AB034 ); 农业农村部西北绿洲节水农业重点实验室开放课题(2023OWSL-01); 山东省重大科技创新工程项目(LSKJ202204503); 天津市科技计划项目(22JCYBIC00660); 中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2023-T04,K-JBYWF-2024-ZT06,K-JBYWF-2021-T06,KJBYWF-2024-QR-06,KJBYWF-2024-QR-08) |
AuthorIntro: |
王晓丽(1986-),女,河北石家庄人,工程师,硕士,从事海水与苦咸水淡化技术研究 |
Reference: |
[1]Wang T Z, Cao X J, Jiao L F. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects[J]. Carb Neutrality, 2022, 1: 21. [2]Kumar S S, Himabindu V. Hydrogen production by PEM water electrolysis - A review[J]. Mater Sci Energ Technol, 2019, 2(3): 442-454. [3]张显峰, 唐乾, 刘伟, 等. PEM电解制氢技术问题及现状分析[J]. 山东化工, 2024, 53(4): 105-109. [4]Busch H, Radtke J, Islar M. Safe havens for energy democracy? Analysing the low-carbon transitions of Danish energy islands[J]. Z Politikwiss, 2023, 33(2): 227-251. [5]Armeni A, Semenyuk M, Plet C, et al. D12.5 deployment plan for future european offshore grid development. Short-term project-bornholm island cleanstream energy hub[R]. Kongens Lyngby: DTU, 2021. [6]Li M, Li H, Fan H F, et al. Engineering interfacial sulfur migration in transition-metal sulfide enables low overpotential for durable hydrogen evolution in seawater[J]. Nat Commun, 2024, 15: 6154. [7]李露, 薛喜东, 靳少培, 等. 反渗透淡化工程设计案例分析[J]. 净水技术, 2019, 38(7): 130-132. [8]Chakik F E, Kaddami M, Mikou M. Effect of operating parameters on hydrogen production by electrolysis of water[J]. Int J Hydrogen Energ, 2017, 42(40): 25550-25557. [9]Amikam G, Nativ P, Gendel Y. Chlorine-free alkaline seawater electrolysis for hydrogen production[J]. Int J Hydrogen Energ, 2018, 43(13): 6504-6514. [10]Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog Energ Combust, 2010, 36(3): 307-326. [11]Vermeiren P, Moreels J P, Claes A, et al. Electrode diaphragm electrode assembly for alkaline water electrolysers[J]. Int J Hydrogen Energ, 2009, 34(23): 9305-9315. [12]潘献辉, 郑睿, 王晓楠, 等. 膜法海水淡化厂产品水水质与饮用安全分析[J]. 中国给水排水, 2016, 32(20): 19-23. [13]李颖华. 航空电子用高纯水制取工艺及应用[J]. 冶金丛刊, 2017(5): 211-212. [14]Zhang X B, Yang Y Y, Ngo H H, et al. A critical review on challenges and trend of ultrapure water production process[J]. Sci Total Environ, 2021, 785: 147254. [15]中华人民共和国自然资源部. HY/T 245-2018 海水淡化装置能量消耗测试方法[S]. 北京: 中国标准出版社, 2018. [16]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32359-2015 海水淡化反渗透膜装置测试评价方法[S]. 北京: 中国标准出版社, 2015. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号