Position:Home >> Abstract

Preparation and properties of B-site praseodymium doped mixed
conductor oxygen permeable membranes
Authors: LIANG Bilin, YU Qian, JIA Siqi, LI Fang, LI Qiming
Units: School of petrochemical Engineering,Liaoning Petrochemical University
KeyWords: oxygen permeable membrane; praseodymium doping; perovskite; oxygen permeability; crystal phase structure
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2025,45(1):101-107

Abstract:
A series of BaPrxFe1-xO3-δ  perovskite oxygen-permeable membranes with Pr doping into B-site were synthesized using a combined complexation method, which effectively optimizes the crystal structure of BaFeO3-δ  parent material and demonstrates the enhanced oxygen permeability. Experimental results indicate that BaFeO3-δ  parent material can transition from a hexagonal crystal structure to a cubic perovskite structure with minimal praseodymium doping, and the crystal cell volume of BaPrxFe1-xO3-δ   series increases progressively with higher Pr doping content.  The crystal structure, surface morphologies, oxygen permeability, and the rate-determining step of BaPrxFe1-xO3-δ  were systematically compared. It can be observed that the oxygen flux of BaFeO3-δ  membrane is very low at medium-low temperature, and its oxygen flux could increase rapidly to about 0.4 mL/(cm2·min) only at 950 ℃. In contrast, the medium-low oxygen permeation flux of BaPr0.05Fe0.95O3-δ can be significantly improved. For instance, its oxygen permeation flux is 0.42 mL/(cm2·min) at 850 ℃, and reach as high as 0.60 mL/(cm2·min) at 950 ℃. The oxygen permeability of BaPrxFe1-xO3-δ   series exhibits a trend of increasing first and then decreasing with increasing Pr content, reaching its maximum value at x=0.1. The oxygen permeation kinetics of BaPr0.05Fe0.95O3-δ membrane  (thickness of 1.0 mm) was systematically analyzed by Wagner equation, and it was found that it is controlled by bulk phase diffusion. This study provides an effective method for tuning the crystal structure and oxygen permeation performance of BaFeO3-δ by doping Pr ions.  
 

Funds:
国家自然科学基金项目(21201096,21703091); 辽宁省教育厅资助项目(LJKMZ20220724,JYTMS20231442); 辽宁科技厅计划指导项目(2019-ZD-0058)

AuthorIntro:
梁碧麟(2000-),女,广东湛江人,硕士生,主要从事新型无机膜材料的研究

Reference:
[1]Hei Y, Wu S, Lu Z, et al. Dual-phase Ce0.8Sm0.2O2-δ-La0.8Ca0.2Al0.3Fe0.7O3-δ oxygen permeation hollow fiber membrane for oxy-CO2 reforming of methane[J]. Catal Sci Technol, 2024, 14(8): 2275-2285. 
[2]Yasutake T, Zhang H M, Shoichi F, et al. Oxygen permeation through perovskite-type oxides[J]. Chem Lett, 1985, 11(11): 1743-1746.
[3]Guo S, Liu Z, Zhu J, et al. Highly oxygen-permeable and CO2-stable Ce0.8Sm0.2O2-δ -SrCo0.9Nb0.1O3-δ  dual-phase membrane for oxygen separation[J]. Fuel Process Technol, 2016, 154: 19-26.
[4]Tan J, Zhang Z, Gu Z, et al. Turning A-site deficient concentration of (Ba0.5Sr0.5)1-xCo0.7Fe0.2Ni0.1O3-δ perovskite membrane for oxygen separation[J]. Sep Purif Technol, 2024, 345: 127373.
[5]Peng S J, Lei S, Wen S S, et al. A promising Ruddlesden-Popper oxide cathode for both proton-conducting and oxygen ionic-conducting solid oxide fuel cells[J]. React Chem Eng, 2022, 7: 2410-2419. 
[6]Steele B C. Ceramic ion conducting membranes[J]. Curr Opin Solid St M, 1996, 1(5): 684-691.
[7]Shao Z P, Yang W S, Cong Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane[J]. J Membr Sci, 2000, 172(1/2): 177-188.
[8]Liang F Y, Jiang H Q, Luo H X, et al. Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3-δ tube membrane in high-purity oxygen production[J]. Chem Mater, 2011, 23(21): 4765-4772.
[9]Wang H S, Lundin S T B, Takanabe K, et al. Synthesis of size-controlled boehmite sols: Application in high-performance hydrogen-selective ceramic membranes[J]. J Mater Chem A, 2022, 10: 12869.
[10]Arapova M, Chizhik S, Bragina O, et al. Consistent interpretation of isotope and chemical oxygen exchange relaxation kinetics in SrFe0.85Mo0.15O3-δ ferrite [J]. Phys Chem Chem Phys, 2024, 26: 10589.
[11]Luo H X, Konstantin E, Jiang H Q, et al. CO2-stable and cobalt-free dual-phase membrane for oxygen separation[J]. Angew Chem Int Ed, 2010, 50(3): 759-763.
[12]Liu T, Wang Y, Yuan R H, et al. Enhancing the oxygen permeation rate of Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase hollow fiber membrane by coating with Ce0.8Sm0.2O1.9 nanoparticles[J]. ACS Appl Mater Interfaces, 2013, 5(19): 9454-9460.
[13]Joo J H, Yun K S, Lee Y, et al. Dramatically enhanced oxygen fluxes in fluorite-rich dual-phase membrane by surface modification[J]. Chem Mater, 2014, 26(15): 4387-4394.
[14]Zhu X F, Li Q M, He Y F, et al. Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors[J]. J Membr Sci, 2010, 360(1/2): 454-460.
[15]Liang F Y, Luo H X, Kaveh P, et al. A novel CO2-stable dual phase membrane with high oxygen permeability[J]. Chem Commun, 2014, 50(19): 2451-2454.
[16]Wei Y Y, Yang W S, Caro J, et al. Dense ceramic oxygen permeable membranes and catalytic membrane reactors[J]. Chem Eng J, 2013, 220(6): 185-203.
[17]柳长福, 郭玉华. 镀锡板表面铬酸盐钝化膜的研究[J].钢铁研究, 2000, 28(3): 38-42.
[18]康永林.轧制工程学[M]//北京:冶金工业出版社,2004.
[19]Tao Z T, Yan L T, Qiao J L, et al. A review of advanced proton-conducting materials for hydrogen separation[J]. Prog Mater Sci, 2015, 74: 1-50.
[20]卢瑶. BaFeO3-δ 基钙钛矿型透氧膜材料结构及性能研究[D]. 北京: 北京科技大学, 2017.
[21]Lu Y, Zhao H, Cheng X, et al. Investigation of in-doped BaFeO3-δ perovskite-type oxygen permeable membranes[J]. J Mater Chem A, 2015, 3(11): 6202-6214.
[22]Mori S. Preparation of various phases of BaFeO3-x[J]. J Am Ceram Soc, 1965, 48(3): 165-165.
[23]Li K, Zhao H, Lu Y, et al. High CO2 tolerance oxygen permeation membranes BaFe0.95-xCa0.05TixO3-δ[J]. J Membr Sci, 2018, 550: 302-312.
[24]Liu Z, Li K, Zhao H, et al. High-performance oxygen permeation membranes: Cobalt-free Ba0.975La0.025Fe1-xCuxO3-δ ceramics[J]. J Materiomics, 2019, 5(2): 264-272.
[25]李培培. 钙钛矿型混合导体透氧膜材料的制备和性能研究 [D]. 合肥: 合肥工业大学, 2015.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号