Position:Home >> Abstract

Research on efficient separation and reuse of sodium carbonate and sodium sulfate in printing and dyeing wastewater based on nanofiltration technology
Authors: LI Zhonghua1, CHANG Na2, CHEN Donggen3, XIE Houpeng3, LIU Peng3, WANG Haitao1
Units: 1. School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; 2. School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China; 3. Zhejiang Jinmo Environmental Technology Co., Ltd., Shaoxing 312000, China
KeyWords: nanofiltration; salt separation; sodium carbonate; sodium sulfate; reuse dyed cloth
ClassificationCode:TQ028
year,volume(issue):pagination: 2025,45(1):129-136

Abstract:
The existence of high salinity in printing and dyeing wastewater requires the recycling of water and inorganic salt resources. Among them, the main salt compositions are sodium carbonate and sodium sulfate. In the conventional wastewater treatment process, the recovery of sodium sulfate is highly valued, while the recovery of sodium carbonate with high economic value is neglected. In this study, based on nanofiltration technology, the separation experiment of sodium carbonate and sodium sulfate was carried out for mixed salt solution and actual printing and dyeing wastewater. The conversion of CO2-3 and HCO-3 is realized by pH adjustment, and the separation of HCO-3 and SO2-4 is realized by nanofiltration process, and then the solid salt obtained by evaporation is reused in the dyeing process. The results show that when the pH value of the solution is 8.1, the conversion rate of CO2-3 to HCO-3 is the highest, which is beneficial to nanofiltration. The small influent pressure is more conducive to the separation and recovery of  HCO-3. The effect of salt separation in the pilot test of mixed salt solution is obvious. SO2-4 is efficiently intercepted, and HCO-3 shows a negative interception state. In the salt separation test of printing and dyeing wastewater, the rejection rate of nanofiltration device to SO2-4 can reach 97.58%, the rejection rate of HCO-3 can reach-57.07%, and the separation degree can reach 220. The salt separation effect is remarkable. The obtained solid sodium carbonate and sodium sulfate were reused to dye the cloth, and the color difference of the dyed cloth was less than 1.Nanofiltration membrane technology shows feasibility in the treatment of printing and dyeing wastewater and salt resource recovery, but further optimization and in-depth exploration of process operation parameters are still needed. 
 
?

Funds:
山东省重点研发计划项目(2022CXGC020416); 兵团科技计划项目(2023AB043); 浙江省重点研发计划项目(2024C03133)

AuthorIntro:
李忠华(1998-),男,内蒙古呼伦贝尔人,硕士研究生,主要研究方向为印染废水成分分析、工业废水处理.

Reference:
[1]Li F, Xia Q, Gao Y Y, et al. Anaerobic biodegradation and decolorization of a refractory acid dye by a forward osmosis membrane bioreactor[J]. Environ Sci-Wat Res Technol, 2018, 4(2): 272-280.
[2]Asghar A, Raman A  A, Daud W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review[J]. J Clean Prod, 2015, 87: 826-838.
[3]Yang C, Li L, Shi J L, et al. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane[J]. J Hazard Mater, 2015, 284: 50-57.
[4]Zou X L. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse[J]. Environ Sci Pollut R, 2015, 22(11): 8174-8181.
[5]Katheresan V, Kansedo J, Lau S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. J Environ Chem Eng, 2018, 6(4): 4676-4697.
[6]吉生军, 严正星. 预处理-反渗透耦合工艺深度处理印染废水[J]. 现代化工, 2021, 41(8): 214-217.
[7]Hasanbeigi A, Price L. A review of energy use and energy efficiency technologies for the textile industry[J]. Renew Sust Energ Rev, 2012, 16(6): 3648-3665.
[8]张淑芬. 中国染料工业现状与发展趋势[J]. 化工学报, 2019, 70(10): 3704-3711.
[9]张春祥, 王江波. 活性染料染棉常见异常分析[J]. 当代化工, 2015, 44(5): 1012-1014.
[10]中国纺织经济研究中心, 东华大学, 环境保护部环境标准研究所, 等. GB 4287-2012, 纺织染整工业水污染物排放标准[S]. 北京: 中国环境出版社,2012.
[11]施小林, 王大新, 楼书怿, 等. 电渗析技术在水泥厂废水零排放处理中的应用[J]. 环境工程, 2021, 39(7): 179-184.
[12]张军, 宋萌萌, 高兴, 等. 以MVR为核心的含盐废水处理工艺设计[J]. 中国给水排水, 2020, 36(24): 109-114.
[13]许加海, 万树春, 王乃琳, 等. 石化高盐废水处理及零排放回用[J]. 工业水处理, 2020, 40(5): 122-125.
[14]伦宇龙, 周新河, 李茸, 等. 高含盐废水减量化及零排放方案初探[J]. 现代化工, 2021, 41(5): 217-221,225.
[15]徐艺铭, 刘永红, 王宁. 高盐印染废水处理技术研究进展[J]. 应用化工, 2020, 49(11): 2859-2863.
[16]李猛. 高盐印染废水深度处理的“纳滤-正渗透-膜蒸馏”膜技术及耦合工艺研究[D]. 南京: 南京理工大学, 2020.
[17]厉阳. 煤化工废水近零排放分盐技术工业应用[J]. 给水排水,2022,58(9):44-50.
[18]张小亚, 苑宏英, 石雪莉, 等. 氯化钠/硫酸钠体系的纳滤分盐试验分析[J]. 膜科学与技术, 2020, 40(5): 111-117.
[19]丁华烘, 郑彤, 葛宇航, 等. 高渗透选择性纳滤膜的制备及其分盐性能[J]. 膜科学与技术, 2022, 42(2): 103-109.
[20]张兆钢, 梁松苗, 田长周, 等. 高压纳滤膜在浓盐水资源化利用中的应用研究[J]. 膜科学与技术, 2021, 41(6): 146-152.
[21]陈伟, 刘丹, 刘琼琼, 等. 纳滤-反渗透集成膜用于高盐废水脱盐分质的中试研究[J]. 现代化工, 2021, 41(12): 208-212.
[22]Wang H, Yang Y, Li X J. Removal of chemical organics and chromaticity from printing and dyeing wastewater using nanofiltration membrane[J]. Asian J Chem, 2014, 26(8): 2318-2320.
[23]赵长伟, 唐文晶, 贾文娟, 等. 纳滤去除水中新兴污染物的研究进展[J]. 膜科学与技术, 2021, 41(1): 144-151.
[24]Li Y, Zhao Y J, Wang H Y, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J].Desalination, 2019, 468: 114081.
[25]Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192.
[26]钱泰宇,孙楠,祝敏,等.国产高压纳滤膜在化工废水零排放分盐系统中的应用研究[J].膜科学与技术,2023,43(1):139-143.
[27]吴琼,明强,卢卫,等.基于脱硫废水零排放的膜法深度处理工艺研究[J].水处理技术,2022,48(8):102-106.
[28]罗兴国, 魏昶, 李兴彬, 等. 真空制盐中碳酸根离子的转化与阻垢防垢[J]. 精细化工, 2020, 37(12): 2571-2577.
[29]Deon S, Dutournie P, Bourseau P. Modeling nanofiltration with Nernst-Planck approach and polarization layer[J]. AIChE J, 2007, 53(8): 1952-1969.
[30]Deon S, Dutournie P, Limousy L, et al. The two-dimensional pore and polarization transport model to describe mixtures separation by nanofiltration: Model validation[J]. AIChE J, 2011, 57(4): 985-995.
[31]Wang T, Zhao C W, Li P, et al. Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water[J]. J Membr Sci, 2015, 477: 74-85.
[32]Ortiz-Albo P, Ibanez R, Urtiaga A, et al. Phenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potential[J]. Sep Purif Technol, 2019, 210: 746-753.
[33]郭世伟, 郑力玮, 罗建泉, 等. 纳滤膜在高盐废水处理中的应用研究进展[J]. 膜科学与技术, 2022, 42(2): 175-182.
[34]赛世杰. 纳滤膜在高盐废水零排放领域的分盐性能研究[J]. 工业水处理, 2017, 37(9): 75-78.
[35]陆至彬, 谢星, 鲁思达, 等. 基于代理模型的含盐废水多级纳滤系统的过程优化设计[J]. 化工学报, 2021, 72(3): 1400-1408.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号