Research progress of vapor permeation membrane separation in pharmaceutical and chemical industry |
Authors: LIU Qin1, WANG Yan1, WU Siyuan1, LI Wancheng1, WU Bo1, LI Chuanrun1,2 |
Units: 1. Pharmaceutical Engineering Technology Research Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; 2. Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China |
KeyWords: membrane; vapor permeation; gas; mixtures; separation |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2025,45(1):185-196 |
Abstract: |
Vapor permeation is one of the new membrane separation technologies in recent years. Mixture in the form of vapor feed, by the chemical gradient (pressure, temperature) as the driving force, the use of each component in the membrane dissolution and diffusion properties of the difference between the membrane to achieve the separation of the mixture of membrane technology. Vapor permeation membrane separation process is directly in contact with vapor, pollution is small, not only simplifies the process flow, but also reduces energy consumption. Simple operation can be effectively combined with other separation technologies such as distillation, adsorption, etc., to form an integrated separation system to improve the overall separation efficiency and selectivity. At present, vapor permeation industrial equipment can realize the dehydration of alcohols, ethers, ketones, esters, hydrocarbons and other systems, with a yield of more than 99%. Vapor permeation coupled with hydrolysis reaction; the conversion rate of ethyl lactate was nearly 100%. Therefore, in the petrochemical industry, traditional Chinese medicine, water treatment and other industrial fields have broad application prospects. In this paper, commonly used vapor permeation membrane materials were discussed. The current status of the application of vapor permeation membrane separation technology was summarized. The value of the vapor permeation membrane coupling process was summarized; the prospects of the vapor permeation membrane separation technology were outlook. To provide reference for the research of steam permeation membrane separation technology, with a view to ultimately realizing the efficient comprehensive utilization of vapor permeation membrane in the field of pharmaceutical and chemical industry. |
Funds: |
国家重点研发计划项目(2022YFB3805100); 国家自然科学基金项目(22478007); 安徽省高校自然科学研究重点项目(2023AH050728) |
AuthorIntro: |
刘琴(1998-),女,湖北应城人,硕士生,研究方向为制药过程传质与分离. |
Reference: |
[1]Bolto B, Hoang M, Xie Z. A review of water recovery by vapour permeation through membranes[J]. Water Res, 2012,46(2):259-266. [2]Uragami T, Morikawa T, Okuno H. Characteristics of permeation and separation of aqueous alcohol solutions through hydrophobic polymer membranes[J]. Polymer, 1989,30(6):1117-1122. [3]Sander U, Janssen H. Industrial application of vapour permeation[J]. J Membr Sci, 1991, 61:113-129. [4]Smuleac V, Wu J, Nemser S, et al. Novel perfluorinated polymer-based pervaporation membranes for the separation of solvent/water mixtures[J]. J Membr Sci, 2010,352(1/2):41-49. [5]Vane L M. Review of pervaporation and vapor permeation process factors affecting the removal of water from industrial solvents[J]. J Chem Technol Biotechnol, 2019,95(3):495-512. [6]Gan Q, Zou Y, Rooney D, et al. Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic properties in determination of gas permeability and selectivity in supported ionic liquid membranes[J]. Adv Colloid Interfac, 2011,164(1/2):45-55. [7]Xu L, Li S, Mao H, et al. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation[J]. Seience, 2022,378(6617):308-313. [8]Kujawski W, Li G, Van der Bruggen B, et al. Preparation and characterization of polyphenylsulfone (PPSU) membranes for biogas upgrading[J]. Materials, 2020,13(12):2847. [9]Galiano F, Castro-Muoz R, Figoli A. Pervaporation, vapour permeation and membrane distillation: From membrane fabrication to application[J]. Membranes, 2021,11(3):162. [10]王洪军, 张丽, 赵莎莎, 等. 蒸汽渗透膜分离技术的研究现状及其应用前景[J]. 科技资讯, 2009(36):92-94. [11]Dementyev P, Wilke T, Naberezhnyi D, et al. Vapour permeation measurements with free-standing nanomembranes[J]. Phys Chem Chem Phys, 2019,21(28):15471-15477. [12]Maus E, Brüschke H E A. Separation of methanol from methylesters by vapour permeation: Experiences of industrial applications[J]. Desalination, 2002,148(1):315-319. [13]Vane L M. Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation[J]. J Chem Technol Biotechnol, 2019,94(2):343-365. [14]Liu G, Jin W. Pervaporation membrane materials: Recent trends and perspectives[J]. J Membr Sci, 2021,636:119557. [15]Fujita Y, Yoshikawa M. Vapor permeation of aqueous ethanol mixtures through agarose membranes[J]. J Membr Sci, 2014,459:114-121. [16]Chen G Q, Scholes C A, Qiao G G, et al. Water vapor permeation in polyimide membranes[J]. J Membr Sci, 2011,379(1):479-487. [17]Yeom C K, Lee S H, Song H Y, et al. Vapor permeations of a series of VOCs/N2 mixtures through PDMS membrane[J]. J Membr Sci, 2002,198(1):129-143. [18]Choi S, Randová A, Vopicka O, et al. Integrally skinned asymmetric poly (vinylidene fluoride) hollow fibre membranes: A study of gas and vapour transport properties[J]. J Membr Sci, 2022,648:120343. [19]Akhtar F H, Kumar M, Vovusha H, et al. Scalable synthesis of amphiphilic copolymers for CO2 and water-selective membranes: Effect of copolymer composition and chain length[J]. Macromolecules, 2019,52(16):6213-6226. [20]Zuo J, Hua D, Maricar V, et al. Dehydration of industrial isopropanol (IPA) waste by pervaporation and vapor permeation membranes[J]. J Appl Polym, 2018,135(24): 45086. [21]Chen G Q, Kanehashi S, Doherty C M, et al. Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification[J]. J Membr Sci, 2015,487:249-255. [22]王洪军, 刘家祺, 唐娜. PVA/PS中空纤维复合膜微量水分的蒸汽渗透性能研究[J]. 膜科学与技术, 2004,24(4):27-31. [23]王洪军, 刘家祺, 唐娜. CS/PS中空纤维复合膜脱除丙烯中微量水分的研究[J]. 水处理技术, 2004,31(4):1-5. [24]李保军. 分离乙醇水近共沸物PVA蒸汽渗透膜的制备[D]. 大连:大连理工大学, 2005. [25]Mahmood A, Bano S, Kim S, et al. Water-methanol separation characteristics of annealed SA/PVA complex membranes[J]. J Membr Sci, 2012,415/416:360-367. [26]Ruan X, He G, Li B, et al. Cleaner recovery of tetrafluoroethylene by coupling residue-recycled polyimide membrane unit to distillation[J]. Sep Purif Technol, 2014,124:89-98. [27]史宝利, 吴庸烈, 刘静芝, 等. 聚酰亚胺/磺化聚芳醚砜共混中空纤维膜用于醇/醚气相分离的研究[J]. 膜科学与技术, 1999,19(6):49-51. [28]王晗, 刘红波, 李博, 等. 基于超滤和蒸汽渗透膜法广藿香挥发油分离研究[J]. 中草药, 2021,52(6):1582-1590. [29] Park E J, Kim D H, Lee J H, et al. Fabrication of a superhydrophobic and oleophobic PTFE membrane: an application to selective gas permeation[J]. Mater Res Bull, 2016,83:88-95. [30]石新宇, 谢纹纹, 毛恒, 等. 聚二甲基硅氧烷膜蒸汽渗透分离乙醇/二氧化碳的研究[J]. 膜科学与技术, 2024,44(2):29-36. [31] Vopicka O, Pilnácek K, Friess K. Separation of methanol-dimethyl carbonate vapour mixtures with PDMS and PTMSP membranes[J]. Sep Purif Technol, 2017,174:1-11. [32]Zhang C, Peng L, Jiang J, et al. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review[J]. Chin J Chem Eng, 2017,25(11):1627-1638. [33]李韠, 许锡恩. 新型改性氧化铝膜蒸汽渗透分离醇水混合物[J]. 化工学报, 1998(6):745-749. [34]Banihashemi F, Lin J Y S. B-oriented MFI zeolite membranes for xylene isomer separation - Effect of xylene activity on separation performance[J]. J Membr Sci, 2022,652:120492. [35]栗雯绮, 陈文革, 崔晓娟, 等. 氧化石墨烯膜的制备、改性及应用研究进展[J]. 表面技术, 2021,50(2):199-210. [36]Smrová D, Sluná M, Peter J, et al. The effects of formation and functionalization of graphene-based membranes on their gas and water vapor permeation properties[J]. Heliyon, 2023,9(11):e21417. [37]邓志彬, 赵勇, 张磊, 等. 氧化石墨烯分离膜孔道调控研究进展[J]. 化工科技, 2024,32(2):75-80. [38]Shi Y, Wang Z, Shi Y, et al. Micrometer-sized MOF particles incorporated mixed-matrix membranes driven by π-π interfacial interactions for improved gas separation[J]. Sep Purif Technol, 2022,295:121258. [39]Hou Q, Wu Y, Zhou S, et al. Fein-tuning der Porengre in versteiften ZIF-8_cm-gerüsten durch eine mixed-linker-strategie für verbesserte permeative CO2/CH4 -trennung[J]. Angewa Chem, 2019,131(1):333-337. [40]李怡静. 锆基MOFs(有机-金属骨架)纳米颗粒对聚偏氟乙烯(PVDF)膜的改性研究[D]. 上海:上海应用技术大学, 2022. [41]Rebollar P G, Carretier E, Lesage N, et al. Volatile organic compound (VOC) removal by vapor permeation at low VOC concentrations: Laboratory scale results and modeling for scale up[J]. Membranes, 2011,1(1):80-90. [42]Chen X, Ping Z, Long Y. Separation properties of alcohol-water mixture through silicalite-I-filled silicone rubber membranes by pervaporation[J]. J Appl Polym, 1998,67:629-636. [43]Jee K Y, Kim N, Lee Y T. The effect of metal complex on pervaporation performance of composite membrane for separation of n-butanol/water mixture[J]. J Ind Eng Chem, 2016,44:155-163. [44]Zhu H, Li R, Liu G, et al. Efficient separation of methanol/dimethyl carbonate mixtures by UiO-66 MOF incorporated chitosan mixed-matrix membrane[J]. J Membr Sci, 2022,652:120473. [45]Yang W, Su X, Zheng T, et al. Fabricating a ZIF-8@polydimethylsiloxane (PDMS)/PVDF mixed matrix composite membrane for separation of ethanol from aqueous solution via vapor permeation[J]. Z Anorg Allg Chem, 2022,648(7):e202100379. [46]于汾, 朱腾阳, 王艳. 氟化改性ZIF-8-90杂化膜的制备及其渗透汽化脱醇研究[J]. 膜科学与技术, 2020,40(1):23-30. [47]Li D, Yao J, Sun H, et al. Preparation and characterization of SiO2/PDMS/PVDF composite membrane for phenols recovery from coal gasification wastewater in pervaporation[J]. Chem Eng Res Des, 2018,132:424-435. [48]Gong G, Mamoru M, Nagasawa H, et al. Vapor-permeation dehydration of isopropanol using a flexible and thin organosilica membrane with high permeance[J]. J Membr Sci, 2019,588:117226. [49]Kondo M, Kita H. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents[J]. J Membr Sci, 2010,361(1):223-231. [50]胡子益, 李洪波, 谭宇鑫, 等. 微波合成的NaA型分子筛膜在乙醇脱水中试及3万吨/年工业示范装置的蒸汽渗透性能研究[J]. 化工进展, 2016,35(S2):438-442. [51]王明玺, 王保国, 赵洪, 等. 支撑液膜蒸汽渗透法分离甲苯/环己烷[J]. 石油化工, 2004(8):747-751. [52]李剑, 彭黔荣, 李阳阳, 等. 离子液体支撑液膜蒸汽渗透和气体分离的研究进展[J]. 化工新型材料, 2017,45(7):15-17. [53]Liu S, Zhou G, Cheng G, et al. Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation[J]. Sep Purif Technol, 2022,299:121729. [54]Figoli A, Marino T, Galiano F, et al. Potentiality of polymeric membranes in aromatherapy: Application to bergamot essential oil[J]. Sep Purif Technol, 2018,207: 166-178. [55]黄小蕾, 李洁, 周素文. 我国大气中挥发性有机物监测与控制现状分析[J]. 资源节约与环保, 2021(6):47-48. [56]李莉娜, 夏青, 秦承华, 等. 挥发性有机物排放监测监管主要问题和对策探析[J]. 环境保护, 2020,48(15):27-32. [57]黄运. 催化燃烧法处理喷漆有机废气的应用探讨[J]. 清洗世界, 2022,38(9):172-174. [58]李瑞标. 浅谈生物法在石油化工污水处理场VOC废气处理中的应用[J]. 皮革制作与环保科技, 2023,4(20):135-137. [59]冯春杨, 赵君科. 电晕法处理挥发性有机化合物技术研究现状[J]. 四川环境, 2003(2):2-5. [60]Zhang X, Gao B, Zheng Y, et al. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms[J]. Bioresour Technol, 2017,245(Pt A):606-614. [61]朱玉玲, 杜前明, 高灿柱. 硫酸铜去除室内空气中低浓度甲醛的液相吸收法[J]. 环境与健康杂志, 2008,25(9):800-802. [62]Song M, Kim K, Cho C, et al. Reduction of volatile organic compounds (VOCs) emissions from laundry dry-cleaning by an integrated treatment process of condensation and adsorption[J]. Processes, 2021,9(9):1658. [63]刘宗耀. TiO2光催化法去除室内空气中VOCs污染物的研究[D]. 长沙:湖南大学, 2007. [64]Rebollar-Pérez G, Carretier E, Lesage N, et al. Vapour permeation of VOC emitted from petroleum activities: Application for low concentrations[J]. J Ind Eng Chem, 2012,18(4):1339-1352. [65]Yang W, Zhou H, Zong C, et al. Study on membrane performance in vapor permeation of VOC/N2 mixtures via modified constant volume/variable pressure method[J]. Sep Purif Technol, 2018,200:273-283. [66]Shen B, Zhao S, Yang X, et al. Relation between permeate pressure and operational parameters in VOC/nitrogen separation by a PDMS composite membrane[J]. Sep Purif Technol, 2022,280:119974. [67]Liu H, Li B, Guo L, et al. Current and future use of membrane technology in the traditional chinese medicine industry[J]. Sep Purif Rev, 2022,51(4):484-502. [68]张浅. 中药挥发油的蒸汽渗透膜过程评价与透过规律研究[D]. 南京: 南京中医药大学, 2019. [69]张浅, 朱华旭, 唐志书, 等. 蒸汽渗透技术用于细辛挥发油含油水体分离的可行性研究[J]. 中草药, 2019,50(8):1795-1803. [70]Liu Q, Liu X, Wu B, et al. Structure regulation of PDMS coating on PTFE membrane surface to achieve efficient separation of gaseous peppermint aromatic water[J]. Appl Surf Sci, 2024,665: 160354. [71]肖武, 高培, 姜晓滨, 等. 双膜组件及耦合工艺的研究与应用进展[J]. 化工进展, 2019,38(1):136-144. [72]Zhang W, Xia C, Li L, et al. Preparation and application of a novel ethanol permselective poly(vinyltriethoxysilane) membrane[J]. RSC Adv, 2014,4(28):14592-14596. [73]张卫东, 张德胜, 刘君腾, 等. 一种利用膜分离技术原位分离乙醇的方法[P].中国: CN103695475A. 2014-04-02. [74]顾学红, 余从立, 王进明, 等. 一种精馏-蒸汽渗透耦合的有机溶剂脱水方法及装置[P].中国: CN103071307A. 2013-05-01. [75]周艳艳. 精馏-蒸汽渗透进行异丙醇脱水的响应面优化[D]. 大连: 大连理工大学, 2013. [76]李云, 吴浩. 一种生物质发酵-蒸汽渗透膜耦合生产乙醇的工艺[P].中国: CN104561123A. 2015-04-29. [77]臧金龙, 雷骞, 张小明. 蒸汽渗透与吸附耦合工艺用于乙醇脱水[J]. 计算机与应用化学, 2016,33(5):593-599. [78]Lubsungneon J, Srisuno S, Rodtong S, et al. Nanofiltration coupled with vapor permeation-assisted esterification as an effective purification step for fermentation-derived succinic acid[J]. J Membr Sci, 2014,459:132-142. [79]相里粉娟, 余从立, 杨龙, 等. 酯化-蒸汽渗透耦合法制备高纯柠檬酸三乙酯[J]. 现代化工, 2016,36(9):157-160. [80]张卫东, 陈宁, 丁波, 等. 一种利用蒸汽渗透耦合技术合成萘普生缩酮中间体的方法[P].中国: CN102952111A.2013-03-06. [81]张文英, 倪英香, 李卫星, 等. 蒸汽渗透耦合乳酸乙酯水解反应条件优化[J]. 南京工业大学学报(自然科学版), 2016,38(6):76-80. [82]陈赞, 刘宗园, 于海斌, 等. 一种用于有机溶剂脱水的 MVR-蒸汽渗透耦合装置及工艺方法[P].中国: CN105289018A.2016-02-03. [83]龙观洪. 中药挥发油的蒸汽渗透膜分离过程的初步研究[D]. 南京:南京中医药大学, 2016. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号