The impact of end-group grafting on the chlorine resistance of semi-aromatic nanofiltration membranes |
Authors: WANG Yuan1, LI Mengfei2, 3, WANG Zhiqiang3, YANG Shaoxia2, WANG Xiaomao3 |
Units: 1. Liyuan Water Design & Consultation Co., Ltd., Shenzhen 518001, China; 2. School of Water Conservancy and Hydropower Engineering, North China Electric Power University, Beijing 100084, China; 3. School of Environment, Tsinghua University, Beijing 100084, China |
KeyWords: semi-aromatic nanofiltration membrane; chlorination; retention rate; grafting; reaction energy barrier |
ClassificationCode:TQ028; TU991.2 |
year,volume(issue):pagination: 2024,44(6):45-54 |
Abstract: |
Semi-aromatic polyamide nanofiltration membranes play a crucial role in drinking water treatment due to their high retention selectivity, large water flux, ease of integration, and scalability. However, their low resistance to active chlorine limits widespread application. This study investigated the effects of grafting with oxalyl chloride and sulfonyl chloride on enhancing membrane chlorine resistance. Grafting with oxalyl chloride decreased retention rates for xylose and Mg2+, albeit with slightly improved chlorine resistance in lab-made NFlab membranes. In addition, commercial NFH membranes exhibited significantly reduced chlorine resistance after oxalyl chloride grafting. Sulfonyl chloride grafting maintained the filtration performance of the original membrane and notably enhanced chlorine resistance in NFlab membranes. DFT calculations on membrane monomers revealed that the nitrogen in the amide bond was a primary reactive site for hypochlorous acid. Grafting led to minor changes in geometric configuration and reaction sites but increased the negative charge on the amide nitrogen. Transition state optimizations demonstrated that sulfonyl chloride grafting increased the reaction barrier for amide bond with hypochlorous acid, thereby improving membrane chlorine resistance. |
Funds: |
国家重点研发计划项目基金(2022YFC3202904) |
AuthorIntro: |
王源(1988-),男,山东聊城人,工程师,硕士,研究方向包括给排水工程设计、供水安全保障、水污染控制等 |
Reference: |
[1]Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. [2]Pearce G K. Introduction to membranes: Filtration for water and wastewater treatment[J]. Filtr Separat, 2007, 44: 24-27. [3]Stevens D M, Shu J Y, Reichert M, et al. Next-generation nanoporous materials: Progress and prospects for reverse osmosis and nanofiltration[J]. Ind Eng Chem Res, 2017, 56(38): 10526-10551. [4]侯琴, 衣刚, 卢彦斌, 等. 一种耐氯性聚酰胺纳滤膜制备及耐氯性评价[J]. 膜科学与技术, 2023, 43(4): 69-74. [5]Zhou Z, Lu D, Li X, et al. Fabrication of highly permeable polyamide membranes with large “leaf-like” surface nanostructures on inorganic supports for organic solvent nanofiltration[J]. J Membr Sci, 2020, 601: 117932. [6]Coronell O, Marias B J, Cahill D G. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes[J]. Environ Sci Tech, 2011, 45(10): 4513-4520. [7]Zhao Y, Tong X, Chen Y. Fit-for-purpose design of nanofiltration membranes for simultaneous nutrient recovery and micropollutant removal[J]. Environ Sci Tech, 2021, 55(5): 3352-3361. [8]Kucera J. Biofouling of polyamide membranes: Fouling mechanisms, current mitigation and cleaning strategies, and future prospects[J]. Membranes, 2019, 9(9): 111. [9]Bucs S S, Farhat N, Kruithof J C, et al. Review on strategies for biofouling mitigation in spiral wound membrane systems[J]. Desalination, 2018, 434: 189-197. [10]Huang J, Luo J, Chen X, et al. How do chemical cleaning agents act on polyamide nanofiltration membrane and fouling layer?[J]. Ind Eng Chem Res, 2020, 59(40): 17653-17670. [11]Gohil J M, Suresh A K. Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies[J]. J Membr Sci, 2017, 541: 108-126. [12]李梦菲, 杨少霞, 杨宏伟, 等. 哌嗪聚酰胺纳滤膜的氯氧化特性及机理[J]. 膜科学与技术, 2023, 43(1): 27-36. [13]Do V T, Tang C Y, Reinhard M, et al. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite[J]. Environ Sci Tech, 2012, 46(2): 852-859. [14]Do V T, Tang C Y, Reinhard M, et al. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications[J]. Environ Sci Tech, 2012, 46(24): 13184-13192. [15]Simon A, McDonald J A, Khan S J, et al. Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals[J]. J Membr Sci, 2013, 447: 153-162. [16]Gaudichet-Maurin E, Thominette F. Ageing of polysulfone ultrafiltration membranes in contact with bleach solutions[J]. J Membr Sci, 2006, 282(1): 198-204. [17]Rouaix S, Causserand C, Aimar P. Experimental study of the effects of hypochlorite on polysulfone membrane properties[J]. J Membr Sci, 2006, 277(1): 137-147. [18]García-Pacheco R, Landaburu-Aguirre J, Lejarazu-Larraaga A, et al. Free chlorine exposure dose (ppm·h) and its impact on ro membranes ageing and recycling potential[J]. Desalination, 2019, 457: 133-143. [19]Lee J H, Chung J Y, Chan E P, et al. Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes[J]. J Membr Sci, 2013, 433: 72-79. [20]Verbeke R, Gómez V, Koschine T, et al. Real-scale chlorination at pH4 of BW30 TFC membranes and their physicochemical characterization[J]. J Membr Sci, 2018, 551: 123-135. [21]Liu S, Wu C, Hou X, et al. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. J Membr Sci, 2019, 573: 36-45. [22]嵇华忠, 韩家凯, 钱璟俐, 等. 表面接枝TAPI改善聚酰胺纳滤膜的耐氯性能[J]. 膜科学与技术, 2023, 43(2): 87-94. [23]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 rev. C.01[CP]. Wallingford, CT, 2016. [24]Krishnan R, Binkley J S, Seeger R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. J Chem Phys, 1980, 72, (1): 650-654. [25]McLean A D, Chandler G S. Contracted gaussian basis sets for molecular calculations. I. Second row atoms, z=11-18[J]. J Chem Phys, 1980, 72(10): 5639-5648. [26]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37(2): 785-789. [27]Binning J R C, Curtiss L A. Compact contracted basis sets for third-row atoms: Ga-kr[J]. J Comput Chem, 1990, 11(10): 1206-1216. [28]Becke A D. Density-functional thermochemistry. Iii. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652. [29]Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. J Phys Chem B, 2009, 113(18): 6378-6396. [30]Fukui K. The path of chemical reactions-the irc approach[J]. Acc Chem Res, 1981, 14(12): 363-368. [31]Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Sep Purif Technol, 2006, 51(1): 40-47. [32]Li M F, Yang S X, Fu W J, et al. Chlorine degradation of semi-aromatic polypiperazine-amide membranes and the mechanisms[J]. J Membr Sci, 2024, 696: 122469. [33]Fu W, Li B, Yang J, et al. New insights into the chlorination of sulfonamide: Smiles-type rearrangement, desulfation, and product toxicity[J]. Chem Eng J, 2018, 331: 785-793. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号