Position:Home >> Abstract

Research progress of nanofiltration membranes for emerging
micropollutants removal
Authors: BAO Jinming, WANG Wenliang, HU Yunxia
Units: State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University
KeyWords: emerging micropollutants; water treatment; nanofiltration membrane
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2024,44(6):169-177

Abstract:
The occurrence of emerging micropollutants in aquatic environments has become an increasingly concerning global environmental issue. Nanofiltration (NF) membrane technology can been widely used to remove emerging micropollutants in water due to its advantages of low cost, low energy consumption and high efficiency. In this paper, the main types of emerging micropollutants in water and their sources and hazards are introduced. The research progress of NF membrane on the removal performance and removal mechanism of emerging micropollutants in water is mainly introduced. Then the problems existing in NF membranes used for the removal of emerging micropollutants in water bodies and possible solutions are discussed and prospected. 
 

Funds:
国家自然基金面上项目(22378314)

AuthorIntro:
鲍金铭(1998-),女,山东菏泽人,硕士研究生,研究方向为纳滤膜.

Reference:
[1]Ahmed M B, Zhou J L, Ngo H H, et al. Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater[J]. Chem Eng J, 2018, 335: 801-811.
[2]Dharupaneedi S P, Nataraj S K, Nadagouda M, et al. Membrane-based separation of potential emerging pollutants[J]. Sep Purif Technol, 2019, 210: 850-866.
[3]Ahmad N N R, Ang W L, Teow Y H, et al. Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review[J]. J Water Process Eng, 2022, 45: 102478.
[4]Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: A review[J]. Polymer, 2016, 103: 417-456.
[5]Nasrollahi N, Vatanpour V, Khataee A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements[J]. Sci Total Environ, 2022, 838: 156010.
[6]Fang S Y, Zhang P, Gong J L, et al. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation[J]. Chem Eng J, 2020, 385: 123400.
[7]Guo X, Zhao B, Wang L, et al. High flux nanofiltration membrane via surface modification using spirocyclic quaternary ammonium diamine for efficient antibiotics/ salt separation[J]. Sep Purif Technol, 2023, 325: 124736.
[8]Fang S Y, Gong J L, Tang L, et al. Thin-film nanocomposite membranes with nature-inspired MOFs incorporated for removing fluoroquinolone antibiotics[J]. ACS Appl Mater Interfaces, 2023, 15(21): 25633-25649.
[9]黄丹, 郑甜甜, 刘蕊,等. 纳滤去除水中布洛芬的研究[J]. 膜科学与技术, 2014, 34(2): 72-76.
[10]Arman N Z, Salmiati S, Aris A, et al. A Review on emerging pollutants in the water environment: existences, health effects and treatment processes[J]. Water, 2021, 13(22): 3258.
[11]Yadav S, Ibrar I, Al-Juboori R A, et al. Updated review on emerging technologies for PFAS contaminated water treatment[J]. Chem Eng Res Des, 2022, 182: 667-700.
[12]Das S, Ronen A. A Review on removal and destruction of per- and polyfluoroalkyl substances (PFAS) by novel membranes[J]. Membranes, 2022, 12(7): 662.
[13]Lee T, Speth T F, Nadagouda M N. High-pressure membrane filtration processes for separation of per- and polyfluoroalkyl substances (PFAS)[J]. Chem Eng J, 2022, 431: 134023.
[14]赵长伟, 唐文晶, 贾文娟, 等. 纳滤去除水中新兴污染物的研究进展[J]. 膜科学与技术, 2021, 41(1): 144-151.
[15]Khoo Y S, Goh P S, Lau W J, et al. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review[J]. Chemosphere, 2022, 305: 135151.
[16]Castao Osorio S, Biesheuvel P M, Spruijt E, et al. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: Considerations and challenges[J]. Water Res, 2022, 225: 119130.
[17]Zhao D L, Zhou W, Shen L, et al. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems[J]. Water Res, 2024, 251:121111.
[18]Siegrist H, Joss A. Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes[J]. Water Sci Technol, 2012, 66(6): 1369-1376.
[19]Cheng F, Wang J. Removal of bisphenol a from wastewater by adsorption and membrane separation: Performances and mechanisms[J]. Chem Eng J, 2024, 484: 149414.
[20]Khanzada N K, Farid M U, Kharraz J A, et al. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review[J]. J Membr Sci, 2020, 598: 117672.
[21]Rodriguez-Narvaez O M, Peralta-Hernandez J M, Goonetilleke A, et al. Treatment technologies for emerging contaminants in water: A review[J]. Chem Eng J, 2017, 323: 361-380.
[22]Schug T T, Janesick A, Blumberg B, et al. Endocrine disrupting chemicals and disease susceptibility[J]. J Steroid Biochem Molecular Biology, 2011, 127(3/4/5): 204-215.
[23]Richardson S D, Ternes T A. Water analysis:emerging contaminants and current issues[J]. Anal Chem, 2018, 90(1): 398-428.
[24]Wang S, Li L, Yu S, et al. A review of advances in EDCs and PhACs removal by nanofiltration: Mechanisms, impact factors and the influence of organic matter[J]. Chem Eng J, 2021, 406: 126722.
[25]Radjenovic J, Petrovic M, Ventura F, et al. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment[J]. Water Res, 2008, 42(14): 3601-3610.
[26]Alonso E, Sanchez-Huerta C, Ali Z, et al. Evaluation of nanofiltration and reverse osmosis membranes for efficient rejection of organic micropollutants[J]. J Membr Sci, 2024, 693: 122357.
[27]Samavati Z, Samavati A, Goh P S, et al. Recent advances in modifying the surface of polymeric NF membranes to enhance the removal of endocrine-disrupting compounds from water and wastewater[J]. J Environ Chem Eng, 2024, 12(1): 111696.
[28]Kumar S, Yadav S, Kataria N, et al. Recent advancement in nanotechnology for the treatment of pharmaceutical wastewater: Sources, toxicity, and remediation technology[J]. Current Pollut Reports, 2023, 9(2): 110-142.
[29]侯立安, 高鑫, 赵兰. 纳滤膜技术净化饮用水的应用研究进展[J]. 膜科学与技术, 2012, 32(5): 1-7.
[30]Liu Y, Wang K, Zhou Z, et al. Boosting the performance of nanofiltration membranes in removing organic micropollutants: Trade-off effect, strategy evaluation, and prospective development[J]. Environ Sci Technol, 2022, 56(22): 15220-15237.
[31]Acero J L, Benitez F J, Teva F, et al. Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration[J]. Chem Eng J, 2010, 163(3): 264-272.
[32]Uyak V, Koyuncu I, Oktem I, et al. Removal of trihalomethanes from drinking water by nanofiltration membranes[J]. J Hazard Mater, 2008, 152(2): 789-794.
[33]Dolar D, Vukovic A, Aperger D, et al. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes[J]. J Environ Sci, 2011, 23(8): 1299-1307.
[34]Ben-David A, Bernstein R, Oren Y, et al. Facile surface modification of nanofiltration membranes to target the removal of endocrine-disrupting compounds[J]. J Membr Sci, 2010, 357(1): 152-159.
[35]Guo H, Deng Y, Tao Z, et al. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds?[J]. Environ Sci Technol Lett, 2016, 3(9): 332-338.
[36]Liu Y L, Wang X M, Yang H W, et al. Quantifying the influence of solute-membrane interactions on adsorption and rejection of pharmaceuticals by NF/RO membranes[J]. J Membr Sci, 2018, 551: 37-46.
[37]Escalona I, de Grooth J, Font J, et al. Removal of BPA by enzyme polymerization using NF membranes[J]. J Membr Sci, 2014, 468: 192-201.
[38]Guo H, Deng Y, Yao Z, et al. A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications[J]. Water Res, 2017, 121: 197-203.
[39]Guo H, Yao Z, Yang Z, et al. A one-step rapid assembly of thin film coating using green coordination complexes for enhanced removal of trace organic contaminants by membranes[J]. Environ Sci Technol, 2017, 51(21): 12638-12643.
[40]Yangali-Quintanilla V, Maeng S K, Fujioka T, et al. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse[J]. J Membr Sci, 2010, 362(1/2): 334-345.
[41]Ahmad A L, Tan L S, Abd. Shukor S R. The role of pH in nanofiltration of atrazine and dimethoate from aqueous solution[J]. J Hazard Mater, 2008, 154(1): 633-638.
[42]Klüpfel A M, Frimmel F H. Nanofiltration of river water-fouling, cleaning and micropollutant rejection[J]. Desalination, 2010, 250(3): 1005-1007.
[43]Sanches S, Penetra A, Rodrigues A, et al. Nanofiltration of hormones and pesticides in different real drinking water sources[J]. Sep Purif Technol, 2012, 94: 44-53.
[44]Wang L, Albasi C, Faucet-Marquis V, et al. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane[J]. Water Res, 2009, 43(17): 4115-4122.
[45]Comerton A M, Andrews R C, Bagley D M, et al. The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties[J]. J Membr Sci, 2008, 313(1): 323-335.
[46]Braeken L, Van der Bruggen B. Feasibility of nanofiltration for the removal of endocrine disrupting compounds[J]. Desalination, 2009, 240(1): 127-131.
[47]Caus A, Vanderhaegen S, Braeken L, et al. Integrated nanofiltration cascades with low salt rejection for complete removal of pesticides in drinking water production[J]. Desalination, 2009, 241(1): 111-117.
[48]Vergili I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources[J]. J Environ Manag, 2013, 127: 177-187.
[49]Maryam B, Buscio V, Odabasi S U, et al. A study on behavior, interaction and rejection of paracetamol, diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes[J]. Environ Technol Innovat, 2020, 18: 100641.
[50]Mei Y, Yang Z, Sun P F, et al. Polyelectrolyte-assisted interfacial polymerization for polyamide nanofiltration membrane with enhanced separation and anti-biofouling properties in groundwater treatment[J]. Desalination, 2023, 555: 116546.
[51]Wei X, Fan K, Cheng P, et al. Modification of nanofiltration membranes using beta-cyclodextrin derivatives with different functional groups for enhanced removal of organic micropollutants[J]. Desalination, 2024, 573: 117219.
[52]Guo Z, Wang H, Wang L, et al. Polyamide thin-film nanocomposite membrane containing star-shaped ZIF-8 with enhanced water permeance and PPCPs removal[J]. Sep Purif Technol, 2022, 292: 120886.
[53]Ma J, Wang Y, Xu H, et al. MXene (Ti3T2CX)-reinforced thin-film polyamide nanofiltration membrane for short-chain perfluorinated compounds removal[J]. Process Safety  Environ Protect, 2022, 168: 275-284.
[54]Huang B Q, Cui H G, Feng T Y, et al. Thin film composite polyamide nanofiltration membranes with interlayer constructed with core-shell structured polystyrene-polyacrylamide nanospheres for antibiotics separation[J]. J Water Process Eng, 2024, 57: 104550.
[55]Dai B, Hu Y, Ding Y, et al. Innovative construction of nano-wrinkled polyamide membranes using covalent organic framework nanoflowers for efficient desalination and antibiotic removal[J]. Desalination, 2024, 570: 117083.
[56]Wang M, Li M, Ren Z, et al. Novel macrocyclic polyamines regulated nanofiltration membranes: Towards efficient micropollutants removal and molecular separation[J]. J Membr Sci, 2023, 668: 121180.
[57]Liu Y l, Zhao Y Y, Wang X M, et al. Effect of varying piperazine concentration and post-modification on prepared nanofiltration membranes in selectively rejecting organic micropollutants and salts[J]. J Membr Sci, 2019, 582: 274-283.
[58]Lin Y L. In situ concentration-polarization-enhanced radical graft polymerization of NF270 for mitigating silica fouling and improving pharmaceutical and personal care product rejection[J]. J Membr Sci, 2018, 552: 387-395.
[59]Rakhshan N, Pakizeh M. Removal of triazines from water using a novel OA modified SiO2/PA/PSf nanocomposite membrane[J]. Sep Purif Technol, 2015, 147: 245-256.
[60]刘韬, 苗君萍, 王珑珑, 等. 相转化纳滤膜的膜材料结构设计及调控策略[J]. 化学进展, 2023, 35(8): 1199-1213.
[61]Cheng Y, Ding H, Liu Y, et al. Fabrication of polyethersulfone/sulfonated polysulfone loose nanofiltration membranes for enhanced selectivity of pharmaceuticals and personal care products and minerals[J]. Sep Purif Technol, 2024, 337: 126466.
[62]Zhu W P, Sun S P, Gao J, et al. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater[J]. J Membr Sci, 2014, 456: 117-127.
[63]Babu V S, Padaki M, D′Souza L P, et al. Effect of hydraulic coefficient on membrane performance for rejection of emerging contaminants[J]. Chem Eng J, 2018, 334: 2392-2400.
参考文献[64]~[68]省略,有需要的读者请与作者联系
——本刊编辑部
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号