Position:Home >> Abstract

Study on properties of polyaniline-based composite ionic
membranes and flow batteries
Authors: LI Yaqian, WANG Quan, ZHANG Kexin, LIU Qiaohong, SONG Peng, AN Quanfu
Units: College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
KeyWords: iron-chromium redox flow battery; polyaniline nanotubes; proton exchange membrane; proton conductivity
ClassificationCode:TQ028
year,volume(issue):pagination: 2025,45(2):1-11

Abstract:
The iron-chromium redox flow battery (ICRFB) has relatively low costs and shows promising application prospects in large-scale energy storage fields. Among them, the proton exchange membrane, as an important component of iron-chromium redox flow battery, has a significant impact on the battery’s energy storage efficiency. Therefore, it is crucial to develop new high-performance proton exchange membrane materials. In this study, a series of composite proton exchange membranes with varying doping levels were successfully prepared by incorporating polyaniline (PANI) nanotubes into Nafion membranes. The introduction of nanotubes improved the water retention capacity and dimensional stability of the membranes while enhancing their proton conductivity. Experimental results showed that the proton conductivity of the Nafion/PANI-0.5 membrane reached 223.4×10-2 S/cm at 80 ℃. The ICRFB single cell using this membrane achieved a coulombic efficiency (CE) and energy efficiency (EE) superior to those of the Nafion membrane at a current density of 100 mA/cm2, reaching 97.9% and 87.2%, respectively. The Nafion/PANI-0.5 membrane prepared in this study demonstrated great performance in ICRFB applications, providing a promising strategy to enhance the overall efficiency of redox flow battery energy storage systems. 
 

Funds:
国家重点研发计划项目(2022YFB3805300)

AuthorIntro:
李雅倩(1998-),女,河南郑州人,硕士,主要研究方向为膜分离

Reference:
[1]Yuan Z, Duan Y, Zhang H, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy Environ Sci, 2016, 9(2):441-447.
[2]Jia C, Pan F, Zhu Y, et al. Hig-henergy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane[J]. Sci Adv, 2015, 1(10):e1500886.
[3]Skyllas-Kazacos M, Cao L, Kazacos M, et al. Vanadium electrolyte studies for the vanadium redox battery - A review[J]. ChemSusChem, 2016, 9(13):1521-1543.
[4]Sun C, Zhang H. Review of the development of firstgeneration redox flow batteries: iron-chromium system[J]. ChemSusChem, 2022, 15(1):e202101798.
[5]Li X, Zhang H, Mai Z, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy Environ Sci, 2011, 4(4):1147-1160.
[6]Leung P, Li X, Ponce de León C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Adv, 2012, 2(27):10125-10156.
[7]Liao J, Lu M, Chu Y, et al. Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries[J]. Power Sources, 2015, 282:241-247.
[8]Noh C, Chung Y, Kwon Y. Optimization of iron and cobalt based organometallic redox couples for long-term stable operation of aqueous organometallic redox flow batteries[J]. Power Sources, 2021, 495:229799.
[9]Gong K, Ma X, Conforti K, et al. A zinc-iron redoxflow battery under $100 per kW·h of system capital cost[J]. Energy Environ Sci, 2015, 8(10):2941-2945.
[10]Pasadakis-Kavounis A, Arslan F, Radmer Almind M, et al. Tuning polybenzimidazole-derived crosslinked interpenetrating network membranes for vanadium redox flow batteries[J]. Supercaps, 2023, 6:e202300176.
[11]Yang P, Xuan S, Long J, et al. Fluorine-containing branched sulfonated polyimide membrane for vanadium redox flow battery applications[J]. ChemElectroChem, 2018, 23(5):3695-3707.
[12]Peng S, Wu X, Sun S, et al. A morphology strategy to disentangle conductivity-selectivity dilemma in proton exchange membranes for vanadium flow batteries[J]. Process Saf Environ Prot, 2018, 116:126-136.
[13]Yu L, Lin F, Xu L, et al. Structure-property relationship study of Nafion XL membrane for high rate, long-lifespan, and all-climate vanadium flow batteries[J]. RSC Adv, 2017, 50(7):31164-31172.
[14]Kim R, Yuk S, Lee J H, et al. Scaling the water cluster size of Nafion membranes for a high performance Zn/Br redox flow battery[J]. J Membr Sci, 2018, 564:852-858.
[15]Oldenburg F J, Nilsson E, Schmidt T J, et al. Tackling capacity fading in vanadium redox flow batteries with amphoteric PBI/Nafion bilayer membranes[J]. ChemSusChem, 2019, 12(12):2620-2627.
[16]Dai J, Dong Y, Yu C, et al. A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application[J]. J Membr Sci, 2018, 554:324-330.
[17]Li N, Guiver M D. Ion transport by nanochannels in ion-containing aromatic copolymers[J]. Macromolecules, 2014, 47(7): 2175-2198.
[18]Ma J, Yuan J, Ming W, et al. Non-traditional processing of carbon nanotubes: A review[J]. Alex Eng J, 2022, 61(1): 597-617.
[19]Zhang G, Li R, Wang X, et al. The inhibiting water uptake mechanism of main-chain type N-spirocyclic quaternary ammonium ionene blended with polybenzimidazole as anion exchange membrane[J]. Sep Purif Technol, 2022, 291: 120950.
[20]Da Trindade L G, Borba K M N, Zanchet L, et al. SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid[J]. Mater Chem Phys, 2019, 236: 121792.
[21]Ru C, Li Z, Zhao C, et al. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells[J]. ACS Appl Mater Interfaces, 2018, 10(9): 7963-7973.
[22]Yang J, Lin J, Sun S, et al. Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells[J]. J Mater Sci Technol, 2023, 152: 75-85.
[23]Rao Z, Zhu D, Xu Y, et al. Enhanced proton transfer in proton-exchange membranes with interconnected and zwitterion-functionalized covalent porous material structures[J]. ChemSusChem, 2023, 16(11): e202202279.
[24]Bai E, Sun C, Zhu H, et al. Amino-functionalized multi-walled carbon nanotube/SPEEK hybrid proton exchange membrane for iron-chromium redox flow battery[J]. Batteries  Supercaps, 2024, 7(6): e202400007.
[25]Xiao Y, Ma Q, Shen X, et al. Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane[J]. J Power Sources, 2022, 528: 231218.
[26]Mehboob S, Lee J Y, Ahn J H, et al. Perfect capacity retention of all-vanadium redox flow battery using Nafion/polyaniline composite membranes[J]. J Ind Eng Chem, 2023, 121: 348-357.
[27]Nagarale R K, Gohil G S, Shahi V K. Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane[J]. J Membr Sci, 2006, 1(280): 389-396.
[28]Cui Y, Liu Y, Wu J, et al. Porous silicon-aluminium oxide particles functionalized with acid moieties: An innovative filler for enhanced Nafion-based membranes of direct methanol fuel cell[J]. J Power Sources, 2018, 403: 118-126.
[29]Xu H, Chen K, Guo X, et al. Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application[J]. Polymer, 2007, 48(19): 5556-5564.
[30]Krishnan N N, Lee H J, Kim H J, et al. Sulfonated poly (ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications[J]. Eur Polym J, 2010, 46(7): 1633-1641.
[31]Naresh R P, Mariyappan K, Dixon D, et al. Investigations on new electrolyte composition and modified membrane for high voltage Zinc-Manganese hybrid redox flow batteries[J]. Supercaps, 2021, 4(9): 1464-1472.
[32]Haisch T, Ji H, Holtz L, et al. Half-cell state of charge monitoring for determination of crossover in VRFB-considerations and results concerning crossover direction and amount[J]. Membranes, 2021, 11(4): 232.
[33]Tang A, Bao J, Skyllas-Kazacos M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. J Power Sources, 2011, 196(24): 10737-10747.
[34]Zeng Y K, Zhao T S, Zhou X L, et al. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries[J]. J Power Sources, 2017, 352: 77-82.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号