Emulsion polymerization and application of perfluorosulfonic acid polymers in confined space |
Authors: XU Kangwei1, ZHANG Anyang1, XUE Shuai2, WANG Li2, CHEN Yue2, ZOU Yecheng2, WEI Gang2, PEI Supeng3, LIU Feng1,2, ZHANG Yongming1,2 |
Units: 1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Key Laboratory of Fluorinated Functional Membrane Materials, Zibo 256401, China; 3. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China |
KeyWords: perfluorinated proton exchange membrane; perfluorosulfonic acid polymer; free radical polymerization; chlor-alkali electrolysis cell; fuel cell |
ClassificationCode:TQ325.3 |
year,volume(issue):pagination: 2025,45(2):12-19 |
Abstract: |
Perfluorosulfonic acid (PFSA) polymers are essential in fuel cells and the chlor-alkali industry, but traditional synthesis methods are limited in controlling molecular weight and sulfonic acid group distribution. This study introduces a novel approach called “confined space single-active-site radical polymerization”. By designing and synthesizing ammonium perfluoropolyether carboxylate (PFPE-NH4) as an emulsifier for emulsion polymerization, efficient and controllable polymerization of tetrafluoroethylene (TFE) and perfluorovinyl ether sulfonyl fluoride (PSVE) monomers was achieved. Various physical and chemical characterization techniques were used to analyze the polymerization dispersion state and polymer properties. The results showed that this new method significantly enhanced the molecular weight and distribution of PFSA polymers (Mn=272 000, Mw/Mn=1.65), with ion exchange capacity tunable through monomer composition ratios. Additionally, the macromolecular polymers markedly improved the material’s tensile strength (34.6 MPa). Furthermore, the prepared ion exchange membranes exhibited exceptional performance in fuel cells and chlor-alkali electrolysis, including high power density (1.59 W/cm2), low open circuit voltage (OCV) decay rate (0.16 mV/h), and minimal electrolyzer voltage increase rate (0.91 mV/month). This study offers a new pathway for the preparation of high-quality PFSA polymers. |
Funds: |
国家重点研发计划(2022YFB3808900, 2022YFB3808902) |
AuthorIntro: |
徐康伟(1998-),男,山东莱阳人,博士研究生,主要研究方向为含氟功能材料合成及应用 |
Reference: |
[1]Han S, Wen P, Wang H, et al. Sequencing polymers to enable solid-state lithium batteries[J]. Nat Mater, 2023, 22:1515-1522. [2]Wang Y, Wu Z, Azad F M, et al. Fluorination in advanced battery design[J].Nat Rev Mater,2024,9:119-133. [3]Zhang C, Yan K, Fu C, et al. Biological utility of fluorinated compounds: from materials design to molecular imaging therapeutics and environmental remediation[J]. Chem Rev, 2022, 122:167-208. [4]Kusoglu A, Weber A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chem Rev, 2017, 117(3): 987-1104. [5]Mauritz K A, Moore R B. State of understanding of Nafion[J]. Chem Rev, 2004, 104(10):4535-4586. [6]Primachenko O N, Marinenko E A, Odinokov A S, et al. State of the art and prospects in the development of proton-conducting perfluorinated membranes with short side chains: a review[J]. Polym Adv Technol, 2021, 32(4):1386-1408. [7]Xu K, Pei S, Zhang W, et al. Ce(Ⅲ)-terephthalic acid metal-organic frameworks as highly efficient· OH radical scavengers for fuel cells and investigation of its antioxidation mechanism[J]. Mater Today Energy, 2023, 31:101195. [8]Lei J, Liu X, Chen X, et al. Ultra-bubble-repellent sodium perfluorosulfonic acid membrane with a mussel-inspired intermediate layer for high-efficiency chlor-alkali electrolysis[J]. J Membr Sci, 2022, 644:120181. [9]Kim J Q, So S, Kim H T, et al. Highly ordered ultrathin perfluorinated sulfonic acid ionomer membranes for vanadium redox flow battery[J]. ACS Energy Lett, 2020, 6(1):184-192. [10]Noh Y S, Jeong H Y, Yoon S J, et al. Well-dispersed radical scavengers for highly durable hydrocarbon-based proton exchange membranes in water electrolysis[J]. Eur Polym J, 2024, 216:113283. [11]Parshina A, Yelnikova A, Kolganova T, et al. Perfluorosulfonic acid membranes modified with polyaniline and hydrothermally treated for potentiometric sensor arrays for the analysis of combination drugs[J]. Membranes, 2023, 13(3), 311. [12]孟庆文, 余国军, 何华. 全氟磺酸树脂的合成与应用[J]. 有机氟工业, 2023, (3):31-34. [13]张永明, 张恒, 秦胜,等. 高交换容量全氟离子交换树脂及其制备方法和用途[P].CN 101709101. 2009-12-15. [14]邵春明, 郦聪, 陈振华,等. 一种全氟磺酸树脂的溶液聚合制备方法[P]. CN 114085309. 2021-11-22. [15]邵春明, 陈振华, 郦聪,等. 一种全氟磺酸树脂的悬浮聚合制备方法[P]. CN 114213569. 2021-11-22. [16]窦增培, 白富栋, 邢航,等. 氟表面活性剂和氟聚合物(Ⅸ)--全氟磺酸树脂和全氟磺酸离子交换膜[J]. 日用化学工业, 2016, 46(9):494-501. [17]袁茂文, 柏槐基, 茹小飞,等. 一种乳液聚合三元共聚物的制备方法及其产物和应用[P]. CN 118684806. 2024-08-22. [18]袁茂文, 杨大伟, 柏槐基. 一种用于制备全氟磺酸树脂的新型磺酰氟单体及其制备方法、全氟磺酸树脂[P]. CN 118851954. 2024-09-26. [19]Kolb C G, Lehmann M, Kulmer D, et al. Modeling of the stability of water-based graphite dispersions using polyvinylpyrrolidone on the basis of the DLVO theory[J]. Heliyon, 2022, 8(12). [20]Guan P, Lei J, Xu K, et al. Origins of water state and ionic cluster morphology for high proton conductivity of short side-chain perfluorinated sulfonic acid membranes[J]. Chem Mater, 2022, 34(17):7845-7857. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号