Position:Home >> Abstract

Fabrication of antifouling polyamide reverse osmosis membrane by surface grafting of dulcitol
Authors: ZHANG Xiaoyu1,2, TIAN Xinxia2, JING Zhaojing3, TIAN Lei2,WANG Haitao1, WEI Yangyang2, CHANG Na4, WANG Jian2, LI Zhaokui2
Units: 1.School of Environmental Sciences and Engineering, Tiangong University, Tianjin 300387, China;2. The Institute of Seawatre Desalination and Multipurpose Utilization, MNR(Tianjin), Tianjin 300192, China; 3. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China;4. School of Chemical Engineering and Technology,Tiangong University, Tianjin 300387, China
KeyWords: reverse osmosis membrane; dulcitol; grafting; water flux;antifouling
ClassificationCode:TQ051.893
year,volume(issue):pagination: 2025,45(2):30-39

Abstract:
?Aromatic polyamide (PA) reverse osmosis (RO) membranes have been extensively employed in seawater desalination, brackish water desalination and wastewater treatment-reuse. However, membrane fouling remains a critical issue that restricts the economy, stability and reliability of RO systems. Herein, dulcitol was used as the antifouling functional monomer to modify the RO membrane by reacting with the residual acyl chloride groups on the surface of PA layer. The experimental results showed that the modified membrane exhibited a decreased water contact, enhanced roughness, increased water flux and enhanced anti-fouling property. The water flux of the modified membrane (M-2) was increased by 46.6% [up to 61.0  L/(m2·h)] , while the rejection rate was remained, compared with that of the unmodified membrane. The water flux reduction rate (17.4%) of modified membrane (M-2) was lower than that of unmodified membrane (20.0%), and the flux recovery rate (87.3%) of modified membrane (M-2) was higher than that of unmodified membrane (84.1%) after cleaning with pure water. These results suggested that the dulcitol grafting can improve the water flux and antifouling property of RO membranes. 
 

Funds:
国家重点研发计划(2023YFE0101000); 天津市科技计划项目(23ZGCXQY00040); 中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2024-QR-04,K-JBYWF-2024-T07)

AuthorIntro:
张笑雨(1997-),女,河北邯郸人,硕士生,研究方向为抗污染反渗透膜

Reference:
[1]Liu Y, Xin Z, Wang M, et al. Optimizing separation layer structure of polyamide composite membrane for high permselectivity based on post-treatment: A review[J]. Desalination, 2024, 580:117585.
[2]康燕, 梁洁, 赵连瑞, 等. 抗污染聚酰胺复合反渗透膜研究进展[J]. 山东化工, 2024, 53(12):104-109.
[3]Guo Y, Ji Y, Wu B, et al. High-flux zwitterionic nanofiltration membrane constructed by in-situ introduction method for monovalent salt/antibiotics separation[J]. J Membr Sci, 2020, 593:117441.
[4]He B, Peng H, Chen Y, et al. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J Membr Sci, 2020, 608:118202.
[5]Guo X, Zhao B, Liang W, et al. High flux nanofiltration membrane via surface modification using spirocyclic quaternary ammonium diamine for efficient antibiotics/salt separation[J]. Sep Purif Technol, 2023, 325:124736.
[6]Weng X, Ji Y, Ma R, et al. Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation[J]. J Membr Sci, 2016, 510:122-130.
[7]Jia M, Zhang W, Zhang X, et al. Hydroxypropyl-β-cyclodextrin-based polyester TFC membrane for efficient antibiotic desalination[J]. Sep Purif Technol, 2023, 317:123884.
[8]Yang L, Zhang X, Rahmatinejad J, et al. Triethanolamine-based zwitterionic polyester thin-film composite nanofiltration membranes with excellent fouling-resistance for efficient dye and antibiotic separation[J]. J Membr Sci, 2023, 670:121355.
[9]Wang Z, Guo S, Zhang B, et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination[J]. J Membr Sci, 2019, 592:117375.
[10]Wu B, Wang N, Lei J, et al. Intensification of mass transfer for zwitterionic amine monomers in interfacial polymerization to fabricate monovalent salt/antibiotics separation membrane[J]. J Membr Sci, 2022, 643:121022.
[11]Wu B, Wang N, Shen Y, et al. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation[J]. J Membr Sci, 2023, 666:121144.
[12]Huang B, Tang Y, Zeng Z, et al. Enhancing nanofiltration performance for antibiotics/NaCl separation via water activation before microwave heating[J]. J Membr Sci, 2021, 629:119285.
[13]Asadollahi M, Bastani D, Musavi A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review[J]. Desalination, 2017, 420:330-383.
[14]Xu G, Wang J, Li C. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations[J]. Desalination, 2013, 328:83-100.
[15]Saeki D, Tanimoto T, Matsuyama H. Anti-biofouling of polyamide reverse osmosis membranes using phosphorylcholine polymer grafted by surface-initiated atom transfer radical polymerization[J]. Desalination,2014, 350:21-27.
[16]Shafi Z, Khan Z, Yang R, et al. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling[J]. Desalination, 2015, 362:93-103.
[17]Yu H, Kang Y, Yu L, et al. Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: a novel approach to enhance membrane fouling resistance[J]. J Membr Sci, 2014, 449:50-57.
[18]Kang G, Yu H, Liu Z, et al. Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly (ethylene glycol) derivatives[J]. Desalination, 2011, 275:252-259.
[19]Liu M, Chen Q, Wang L, et al. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA) [J]. Desalination, 2015, 367:11-20.
[20]Hu Y, Lu K, Yan F, et al. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA) [J]. J Membr Sci, 2016, 501:209-219.
[21]Kang G, Liu M, Lin B, et al. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol)[J]. Polymer, 2007, 48(5):1165-1170.
[22]Akbari A, Derikvandi Z, Rostami M. Influence of chitosan coating on the separation performance, morphology and anti-fouling properties of the polyamide nanofiltration membranes[J]. J Ind Eng Chem, 2015, 28:268-276.
[23]刘毅锋, 张娟. 聚乙烯醇树脂的改性及应用[J]. 现代化工, 1991, 11(6):56-57.
[24]Akin O, Temelli F. Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM[J]. Desalination, 2011, 278(1):387-396.
[25]Tang Y, Kwon N, Leckie O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1/2/3):149-167.
[26]Singh S, Joshi S, Trivedi J, et al. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions[J]. J Membr Sci, 2005, 278(1):19-25.
[27]Li C, Zhao Y, Lai G, et al. Investigation of aqueous and organic co-solvents roles in fabricating seawater reverse osmosis membrane[J]. J Membr Sci, 2022, 645:120187.
[28]Zhu S, Zhao S, Wang Z, et al. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate[J]. J Membr Sci, 2015, 493:263-274.
[29]Suresh P, Plapp B V. The Thr45Gly substitution in yeast alcohol dehydrogenase substantially decreases catalysis, alters pH dependencies, and disrupts the proton relay system[J]. Chem-Biol Interact, 2021, 349:109650.
[30]Jing Z, Wang J, Zhao H, et al. Regulation of micro-structure and surface property of SWRO membrane via introducing albumin into polyamide layer for improving permselectivity[J]. Desalination, 2023, 555:116551.
[31]许骏. 抗污染耐氯芳香聚酰胺复合反渗透膜制备及其性能研究[D]. 天津: 天津大学, 2014.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号