Position:Home >> Abstract

Preparation and properties of polyelectrolyte complex-polyvinyl alcohol-based
antibacterial total heat exchange membrane
Authors: LI Wenli1,2, WANG Wei1,2, LIU Shengkai1, SHAO Ruiqi1,2, SHI Haiting1, WANG Zhishen1,2, LIU Liangsen1, XU Zhiwei1,2
Units: 1. Key Laboratory of Advanced Textile Composites, Ministry of Education, College of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; 2. Shaoxing Keqiao Research Institute, Tiangong University, Shaoxing 312030, China
KeyWords: full heat exchange membrane; polyelectrolyte complex; quaternary ammonium salt; alginate; water vapor transmittance; gas barrier property
ClassificationCode:TQ028; TB324
year,volume(issue):pagination: 2025,45(2):83-91

Abstract:
Polyelectrolyte complex is a highly hydrophilic synthetic polymer composed of polyelectrolytes with opposite charges. It is an ideal material for the preparation of hydrophilic films, and has been used in the field of water treatment. However, there is relatively lack of research on polyelectrolyte complexes in the field of total heat exchange membranes. In this paper, polyelectrolyte complex was formed by introducing quaternary ammonium salt, alginate and poluvinyl alcohol into the casting film solution, and then coated into a porous polyethylene substrate membrane to prepare the total heat exchange membrane. The structure and morphology of the total heat exchange membrane were characterized. The influence of polyelectrolyte complex on the thermal stability, water vapor permeability and gas barrier properties of the total heat exchange membrane was investigated. The results showed that compared with the quaternary ammonium alkali-polyvinyl alcohol-based composite membrane and alginate-polyvinyl alcohol-based composite membrane, the overall performance of the quaternary ammonium alkali-polyvinyl alcohol-based polyelectrolyte composite membrane was the superior, the maximum thermal decomposition temperature was 281.3 ℃, and the water vapor transmission rate was 2 758.4 g/(m2·d);the gas barrier property is as high as 1.15×108 m2·m3·Pa, and the antibacterial effect is significant. The introduction of polyelectrolyte complex enhanced the water vapor permeability and retained gas barrier property at the same time. providing an efficient total heat exchange membrane for the field of total heat exchange. 

Funds:
国家自然科学基金青年基金项目(12205218)

AuthorIntro:
李文丽(2000-),女,河南新乡人,硕士研究生,研究方向为全热交换膜

Reference:
[1]张瑞合.全热交换的纯效过滤新风系统在工程中的应用[J].建筑技术开发,2017,44(7):145-146.
[2]杨洋.透湿阻气聚乙烯基复合膜的制备及性能研究[D].青岛:青岛科技大学,2023.
[3]薛立新,魏增斌,聂锋,等.经济型高性能离子膜研究进展[J].膜科学与技术,2014,34(1):1-8,23.
[4]Muruganandam N, Paul D R. Evaluation of substituted polycarbonates and a blend with polystyrene as gas separation membranes[J]. J Membr Sci, 1987, 34(2): 185-198.
[5]Phattaranawik J, Jiraratananon R, Fane A, et al. Heat transport and membrane distillation coefficients in direct contact membrane distillation[J]. J Membr Sci, 2003, 212(1/2):177-193.
[6]Zhang L Z, Zhang X R, Miao Q Z, et al. Selective permeation of moisture and VOCs through polymer membranes used in total heat exchangers for indoor air ventilation[J]. Indoor air, 2012, 22(4):321-330.
[7]Chang X, Lyu Z,  Hu H, et al. Thin film composite polyamide (TFC-PA) total heat exchange membranes (THEMs) with ultrahigh sensible heat recovery and greatly improved CO2 barrier property[J]. J Membr Sci, 2022, 662:12095.
[8]胡腾, 闵敬春, 宋耀祖.膜换湿传质过程对传热过程影响分析[J]. 科学通报, 2009, 54(13): 1922-1926.
[9]Khoonsap, Santi, Amnuaypanich. Mixed matrix membranes prepared from poly(vinyl alcohol) (PVA) incorporated with zeolite 4A-graft-poly(2-hydroxyethyl methacrylate) (zeolite-g-PHEMA) for the pervaporation dehydration of water-acetone mixtures[J]. J Membr Sci, 2011, 367(1/2):182-189.
[10]王艺伟,韩秋,杜旭东,等.可用于全热交换器的透湿阻气膜的研究进展[J].膜科学与技术,2016,36(2):132-140,147.
[11]Xue L X, Liu B X, Chen J, et al. Structure and proper ties of total-heat exchange membranes for energy saving heat exchange ventilation processes[J]. Adv Mater Res, 2012, 374:568-571.
[12]张军,孙梅,马小津,等.表面“原位”聚离子复合修饰的乙烯-乙烯醇共聚物膜的结构[J].高分子学报,2000,(1):114-117.
[13] 卢阳.壳聚糖基聚电解质复合物止血海绵的制备及其评价研究[D].天津:天津科技大学,2021.
[14]李清泉,谭惠芬,韩子龙,等.一种天然聚电解质制备荷正电纳滤膜的研究[J].水处理技术,2023,49(2):30-34.
[15]赵凯乐,于影,赵章风,等.聚吲哚/聚丙烯腈聚合物基电解质膜的制备及性能[J].精细化工,2023,40(2):256-262,348.
[16]杨蕊,秦振平,李明晔,等.聚电解质-TiO2改性PVDF多孔膜及其电化学性能[J].膜科学与技术,2020,40(6):51-57.
[17]Muhammad R, Saba M, Mahmood T B, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli[J]. Ann Microbiol, 2010, 60(1):75-80.
[18]王硕峰.Cu纳米颗粒的抗菌性及其在纺织物中的应用研究[D].兰州:兰州大学,2021.
[19]李晓.海藻酸钠与水溶性高分子共混产物的制备及其性能研究[D].青岛:青岛大学,2018.
[20]刘媛.基于多巴胺的碳纤维表面修饰及其性能研究[D].上海:上海交通大学,2018.
[21]Zhang X R, Zhang L Z, Liu H M, et al. One-step fabrication and analysis of an asymmetric cellulose acetate membrane for heat and moisture recovery[J]. J Membr Sci, 2010, 366(1):158-165.
[22]刘城,卢雪峰,王晋,等.亲疏水交替碳纸的制备及其在气体扩散层中的应用[J].精细化工,2023,40(10):2207-2213.
[23]冯翠珍.直接蒸发冷却空调器填料表面性能实验研究[D].广州:广州大学,2012.
[24]宣理静.聚电解质PDDA/PSS自组装机理及渗透气化性能研究[D].杭州:浙江大学,2006.
[25]刘福.Pebax/多孔二维材料混合基质膜的制备及CO2分离性能研究[D].石河子:石河子大学,2022.
[26]Acton D S, Plat-Sinnige M J T, Wamel W V, et al. Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact[J]. Eur J Clin Microbiol, 2009, 28 (2):115-127.
[27]Mertz D, Frei R, Periat N, et al. Exclusive Staphylococcus aureus throat carriage: at-risk populations[J]. Arch Intern Med, 2009, 26 169(2):172-178.
[28]Nadège, Bourgeois-Nicolaos, Jean-Christophe, et al. Maternal vaginal colonization by Staphylococcus aureus and newborn acquisition at delivery[J]. Paediatr Perinat Ep, 2010, 24(5): 488-491. 
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号