Application of ceramic ultrafiltration membrane in the separation of chitosan oligosaccharide |
Authors: HAN Qing1, WEN Juanjuan2, ZHOU Huanyu1, CHEN Xianfu1, QIU Minghui1, FAN Yiqun1 |
Units: 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; 2. College of Food Science and Technology, Nanjing Tech University, Nanjing 211816, China |
KeyWords: ceramic membrane; chitosan oligosaccharides; ultrafiltration; separation |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2025,45(2):153-161 |
Abstract: |
Tight ceramic ultrafiltration membranes were utilized to separate chitosan oligosaccharide within a specific degree of polymerization range. The effects of operating conditions, including pH, concentration of chitosan oligosaccharide solution, temperature and operating pressure on separation performance were investigated, leading to optimization of the operating parameters. A tight ceramic ultrafiltration membrane with a molecular weight cut-off of 5 000 and a pure water flux of approximately 650 L/(m2·h) was employed. The results showed that at pH 7, the influence of charge on chitosan oligosaccharides was weak in the process of membrane separation, which mainly depended on the pore size of ceramic membrane for screening. Higher concentrations of crude chitosan oligosaccharide solutions led to increased viscosity and significant concentration polarization, reducing the transmittance of DP2~5 chitosan oligosaccharides. At a concentration of 10 g/L, the flux of the ultrafiltration membrane was maximized, along with the highest transmittance of DP2~5 chitosan oligosaccharides. Temperature had a minor effect on retention performance during membrane separation; however, higher feed temperatures enhanced flux, with an optimal separation temperature of 35 ℃. Increased transmembrane pressure difference resulted in higher retention of DP2~5 chitosan oligosaccharides, with the optimal operating condition being a transmembrane pressure difference of 0.1 MPa. In addition, the stability of tight ultrafiltration membrane during separation process was evaluated. During continuous operation for 720 min, the flux of ceramic membrane and the transmittance of DP2~5 chitosan oligosaccharides were basically stable, with a stable flux of about 130 L/(m2·h) and a separation factor of 15. Tight ceramic ultrafiltration membranes have demonstrated promising application prospects in the precise and efficient separation of chitosan oligosaccharides within specific DP ranges. |
Funds: |
国家重点研发计划项目(2022YFB3805001); 国家自然科学基金项目(21921006,22408162) |
AuthorIntro: |
韩晴(1998-),女,江苏连云港人,硕士研究生,主要从事膜分离材料的研究与应用 |
Reference: |
[1]Gupta S, Vasanth D, Kumar A. Physicochemical analysis of chitosan oligosaccharide revealed its usefulness in effective delivery of drugs[J]. J Biomater Sci, Polymer Edition: 1-19. [2]Wen J J, Chen Y S, Yan Q, et al. Experiment on and modeling of purification of fructooligosaccharides using ceramic nanofiltration membranes[J]. Sep Purifi Technol, 2023, 323: 124508. [3]Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications[J]. Pharmacol Ther, 2017, 170: 80-97. [4]常海洋, 赵安琪, 王婧, 等. 壳聚糖和壳寡糖的制备及应用[J]. 现代农业科技, 2024, (5): 161-164. [5]Zhong C, Ukowitz C, Domig K, et al. Short-chain cello-oligosaccharides: Intensification and scale-up of their enzymatic production and selective growth promotion among probiotic bacteria[J]. J Agr Food Chem, 2020, 68(32): 8557-8567. [6]Khaisaat K, Saovanee C, Angkana W, et al. Influence of degree of polymerization of low-molecular-weight chitosan oligosaccharides on the α-glucosidase inhibition[J]. Molecules, 2022, 27(23): 8129-8129. [7]肖震. 新型混合模式色谱固定相制备及其在壳寡糖精准分离中的应用[D]. 天津: 河北工业大学, 2022. [8]Castro-Muoz R, Boczkaj G, Gontarek E, et al. Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review[J]. Trends Food Sci Tech, 2020, 95(C): 219-232. [9]洪兰, 蒋尚昆, 刘美玲, 等. 酶膜反应器与手性分离膜在功能性糖生产中的应用展望[J]. 膜科学与技术, 2022, 42(2): 146-153. [10]陈倩倩, 邱勇隽, 夏泉鸣, 等. 特定聚合度区间壳寡糖的膜分离制备技术[J]. 食品工业科技, 2019, 40(22): 163-168,174. [11]郭佩, 赵黎明, 刘鲁杰, 等. 利用纳滤膜技术分离秸秆发酵液中糖和乳酸的研究[J]. 膜科学与技术, 2023, 43(3): 104-115. [12]李佳明, 张宏建, 王靓, 等. 膜分离法提高麦芽四糖糖浆纯度的研究[J]. 食品与发酵工业, 2024, 50(9): 182-187,195. [13]张伟, 陈献富, 范益群. 溶胶-凝胶法制备TiO2掺杂α-Al2O3高通量陶瓷超滤膜[J]. 膜科学与技术, 2020, 40(5): 16-22. [14]Xie Y, Wang M, Chen X, et al. Optimized ceramic membrane-based method for efficient and acid-free rice protein preparation from alkaline extracts[J]. J Membr Sci, 2025, 713: 123355. [15]笪晓薇, 齐婷, 柯威, 等. 膜分离技术在乳品加工行业中的应用[J]. 膜科学与技术, 2022, 42(4): 157-162. [16]张丽华, 叶世莉, 刘思美, 等. 白及多糖的超滤陶瓷膜分离工艺研究[J]. 陕西中医药大学学报, 2022, 45(6): 34-39. [17]张云, 齐婷, 石姝, 等. 陶瓷超滤膜在右旋糖酐分离中的应用[J]. 膜科学与技术, 2018, 38(2): 86-91,97. [18]Wen J J, Han Q, Qiu M H, et al. Membrane technologies for the separation and purification of functional oligosaccharides: A review[J]. Sep Purifi Technol, 2024, 346: 127463. [19]Jin Z H, Qiu M H, Wen J J, et al. Construction of ZrO2-CeO2 composite UF membranes for effective PVA recovery from desizing wastewater[J]. Sep Purifi Technol, 2023, 306: 122672. [20]Cheng S, Oatley D L, Williams P M, et al. Positively charged nanofiltration membranes: Review of current fabrication methods and introduction of a novel approach[J]. Adv in Col Interface Sci, 2011, 164(1/2): 12-20. [21]Qi T W,Da X ,Zhang Y , et al. Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes[J]. Sep Purif Technol, 2020, 253: 117491. [22]刘文丽, 严虞虞, 杨华瑞, 等. 高效液相色谱法测定壳寡糖的含量[J]. 化学分析计量, 2018, 27(6): 87-90. [23]Cohen J L, Barile D, Liu Y, et al. Role of pH in the recovery of bovine milk oligosaccharides from colostrum whey permeate by nanofiltration[J]. Int Dairy J, 2017, 66: 68-75. [24]Shi J F, Zhang W Y, Su Y L, et al. Composite polyelectrolyte multilayer membranes for oligosaccharides nanofiltration separation[J]. Carbohydr Polym, 2013, 94(1): 106-113. [25]Goulas A K, Kapasakalidis P G, Sinclair H R, et al. Purification of oligosaccharides by nanofiltration[J]. J Membr Sci, 2002, 209(1): 321-335. [26]孟子怡, 叶亚晗, 余浩卫, 等. 膜孔径对陶瓷膜净化生物发酵液性能的影响研究[J]. 膜科学与技术, 2021, 41(6): 95-102. [27]Vegas R, Moure A, Domínguez H, et al. Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan[J]. Bioresour Technol, 2007, 99(13): 5341-5351. [28]Dong H, Wang Y, Zhao L, et al. Purification of DP 6 to 8 chitooligosaccharides by nanofiltration from the prepared chitooligosaccharides syrup[J]. Bioresour Bioprocess, 2014, 1(1): 20. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号