Preparation and properties of amphoteric SPEEK composite membrane for hydrogen production from electrolytic water |
Authors: CHEN Fuhai1,2, WANG Lihua2, HAN Xutong1 |
Units: 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; 2. Key Laboratory of Polymer in Extreme Environment, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China |
KeyWords: sulfonated poly(ether ether ketone); amphoteric SPEEK polymer; composite membrane; electrolysis water for producing hydrogen |
ClassificationCode:TQ317; TQ116.2+1 |
year,volume(issue):pagination: 2025,45(3):1-8 |
Abstract: |
In this study, the aminated molecular side link branch was linked to sulfonated polyetheretherketone (SPEEK), and amphoteric SPEEK polymer (SNPEEK) containing sulfonic group and aminated group in the molecular chain was prepared. A series of amphoteric SPEEK composite membranes (AMPEEK) were prepared by adjusting the ratio of SPEEK and SNPEEK. The mechanical properties, proton conductivity, water absorption and swelling rate of AMPEEK membrane were tested. It was found that when the proportion of SNPEEK was 30%, the comprehensive performance of AMPEEK30 membrane was the best. When it was assembled into a membrane electrode for proton exchange membrane water electrolysis (PEMWE), the high current density of 1.15 A/cm2 was achieved at a voltage of 2 V, which was 2.3 times that of SPEEK membrane and 3.3 times that of Nafion115 membrane. The performance of pemwe was greatly improved. |
Funds: |
AuthorIntro: |
陈福海(1999-),男,山西大同人,硕士研究生,主要研究方向为质子交换膜 |
Reference: |
[1]程文姬, 赵磊, 郗航, 等. “十四五”规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11): 181-188. [2]Abdalla A M, Hossain S, Nisfindy O B, et al. Hydrogen production, storage, transportation and key challenges with applications: A review[J]. Energy Convers Manage, 2018, 165: 602-627. [3]López-Fernández E, Sacedón C G, Gil-Rostra J, et al. Recent advances in alkaline exchange membrane water electrolysis and electrode manufacturing[J]. Molecules, 2021, 26: 6326-6350. [4]Liu L, Ma H, Khan M, et al. Recent advances and challenges in anion exchange membranes development/application for water electrolysis: A review[J]. Membranes, 2024, 14: 85-109. [5]万磊, 徐子昂, 王培灿, 等. 电解水制氢的耐碱离子膜研究进展[J]. 化工进展, 2022, 41(3): 1556-1568. [6]Li X, Yao Y C, Tian Y R, et al. Recent advances in key components of proton exchange membrane water electrolysers[J]. Mater Chem Front, 2024, 8: 2493-2510. [7]尹卓毓, 吴洪, 姜忠义. 阴离子交换膜离子传导率与耐碱稳定性研究进展[J]. 膜科学与技术, 2023, 43(6): 112-112. [8]马晓锋, 张舒涵,何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427. [9]Zhang Y Q, Zhang A L, Wang S, et al. Investigation of sulfonation degree and temperature on structure, thermal and membrane’s properties of sulfonated poly(ether ether ketone )[J]. Int J Hydrogen Energy, 2023, 48(37): 13791-13803. [10]陈葛锋. 面向PEM电解水制氢的质子交换膜与膜电极性能研究[D]. 天津: 天津工业大学, 2023. [11]Qian P H, Zhou W H, Zhang Y X, et al. Review and perspectives of sulfonated poly(ether ether ketone) proton exchange membrane for vanadium flow batteries[J]. Energy Fuels, 2023, 37: 17681-17707. [12]Ren J H, Xu J M, Ju M C, et al. Long-term durable anion exchange membranes based on imidazole-functionalized poly(ether ether ketone) incorporating cationic metal-organic framework[J]. Adv Powder Mater, 2022, 1(2):100017-100027. [13]Wu J, Nie S J, Liu H, et al. Design and development of nucleobase modified sulfonated poly(ether ether ketone) membranes for high-performance direct methanol fuel cells[J]. J Mater Chem A, 2022, 10: 19914-19924. [14]Liu B, Jiang Y H, Wang H X, et al. Sulfonated poly(ether ether ketone) hybrid membranes with amphoteric graphene oxide nanosheets as interfacial reinforcement for vanadium redox flow battery[J]. Energy Fuels, 2020, 34: 2452-2461. [15]Zhang X C, Long J S, Wang M X, et al. Using bifunctionalized NH2-UiO-66-SO3H to improve the performance of sulfonated poly(ether ether ketone) in proton exchange membranes[J]. Int J Hydrogen Energy, 2024, 61: 1495-1504. [16]Fan C Y, Wu H, Li Y, et al. Incorporating self-anchored phosphotungstic acid@triazole-functionalized covalent organic framework into sulfonated poly(ether ether ketone) for enhanced proton conductivity[J]. Solid State Ionics, 2020, 349: 115316-115325. [17]Long J S, Zhang X C, Zeng S Q, et al. Constructing a long-range proton conduction bridge in sulfonated polyetheretherketone membranes with low DS by incorporating acidbase bi-functionalized metal organic frameworks[J]. Int J Hydrogen Energy, 2023, 48: 2001-2012. [18]Wang G, Zhang M, He Z, et al. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone) with ammonium polyphosphate for vanadium redox flow battery applications[J]. J Appl Polym Sci, 2021, 138:e50592. [19]Chen D J, Chen X L, Ding L F, et al. Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application[J]. J Membr Sci, 2018, 553: 25-31. [20]Liu S, Wang L H, Li D, et al. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/ quaternized poly(ether imide) for vanadium redox flow battery applications[J]. J Mater Chem A, 2015, 3: 17590-17597. [21]刘绪锟, 王丽华, 仇智, 等. 高质子传导率的GSPEEK凝胶膜制备及其PEMWE性能[J]. 膜科学与技术, 2024, 44(4): 28-35. [22]Wang H X, Pang L, Li Y H, et al. Ultra-high selective SPEEK-based proton exchange membrane for vanadium flow battery enabled by homologous structuralized amphoteric poly(ether ether ketone) polymer[J]. J Membr Sci, 2025, 717:123662. [23]Wang X, Wang S, Liang D, et al. Low vanadium permeability membranes based on flexible hydrophilic side chain grafted polybenzimidazole/polymeric ionic liquid for VRFBs[J]. Batteries, 2023, 9: 141-154. [24]Ueki T, Watanabe M. Macromolecules in ionic liquids: Progress, challenges, and opportunities[J]. Macromolecules, 2008, 41(11): 3739-3749. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号