Preparation and properties of MOF-808(NH2) modified polyamide nanofiltration membranes |
Authors: WANG Ziwei1, SHEN Yue1, WANG Tao1,2, FENG Yingnan1, ZHAO Zhiping1 |
Units: 1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; 2. Tangshan Research Institute of Beijing Institute of Technology, Tangshan 063000, China |
KeyWords: MOF-808(NH2); green synthesis; interfacial polymerization; nanocomposite nanofiltration membrane; high permeability |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2025,45(3):9-22 |
Abstract: |
Metal-organic framework materials (MOFs) have shown remarkable advantages in the field of functional modification of nanofiltration membranes because of their regular pore structure, polymer compatibility and high specific surface area, but their application is still limited by key challenges such as nano-dispersion stability and green preparation. In this study, MOF808 with excellent water stability was selected as a modified nano-material. MOF808 particles with a particle size of about 60 nm and a specific surface area of 1 702 m2/g were prepared by a two-step green synthesis process, and MOF808(NH2) was obtained by amino modification. Based on pre-deposition assisted interfacial polymerization, MOF808(NH2) modified polyamide nanocomposites were successfully constructed. The results showed that the increase of MOF808(NH2) loading promoted the change of membrane surface morphology from nodular structure to particle aggregation state, and the roughness and hydrophilicity were improved. The optimized NF2 membrane [MOF808(NH2) loading of 3.18 μg/cm2] showed excellent permeation selectivity, with a water flux of 177.15 L/(m2·h·MPa), and the rejection rates of Na2SO4 and NaCl reached 95.06% and 19.24% respectively. NF2 membrane showed excellent long-term stability in 100 hours of continuous operation test. The directional modification strategy of functionalized MOFs developed in this study provides a new regulatory path for the rational design and preparation of high-performance TFN membrane. |
Funds: |
国家自然科学基金面上项目(52370063); 河北省自然科学基金面上项目(B2022105012) |
AuthorIntro: |
王紫薇(1999-),女,河北保定人,硕士研究生,从事纳滤膜制备及应用研究 |
Reference: |
[1]Hasan N, Pushpalatha R, Manivasagam V S, et al. Global sustainable water management: A systematic qualitative review[J]. Water Resour Manage, 2023, 37(13): 5255-5272. [2]石紫, 王志,王宠,等. 染料分离有机纳滤膜制备技术研究进展[J]. 膜科学与技术,2020, 40(1): 340-351. [3]Zhang Y, Hao Z, Hussein I, et al. Tunable ionic sieving membrane via reactive layer-by-layer assembly of porous organic cages[J]. Adv Funct Mater, 2024, 34(25): 2315750. [4]Perveen S, Hussain S G, Ahmed M J, et al. A viable and sustainable flat-membrane plate-and-frame module for spent acid regeneration and metal ion recovery[J]. Heliyon, 2023, 9(8): e18344. [5]Du Y C, Pramanik B K, Zhang Y, et al. Recent advances in the theory and application of nanofiltration: A review[J]. Curr Pollut Rep, 2022, 8: 51-80. [6]侯立安, 刘晓芳. 纳滤水处理应用研究现状与发展前景[J]. 膜科学与技术,2010, 30(4): 1-7. [7]Li X, Wang Z, Han X L, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. J Membr Sci, 2021, 640: 119765. [8]Di J W, Wang H Y, Zhang L F, et al. Recent progress in advanced polyamide nanofiltration membranes via interfacial polymerization for desalination and beyond[J]. Desalination, 2024, 592: 118167. [9]Chi M Z, Zheng P Y, Wei M X, et al. Polyamide composite nanofiltration membrane modified by nanoporous TiO2 interlayer for enhanced water permeability[J]. J Ind Eng Chem, 2022, 115: 230-240. [10]Kang X, Liu X, Liu J H, et al. Spin-assisted interfacial polymerization strategy for graphene oxide-polyamide composite nanofiltration membrane with high performance[J]. Appl Surf Sci, 2020, 508: 145198. [11]Xue Q, Meng W Q, Zhu J Y, et al. Constructing carboxylated MXene interlayer in polyamide nanofiltration membrane for enhancing perm-selectivity and antifouling performance[J]. J Membr Sci, 2023, 683: 121860. [12]Jiang H, Yang N, Hao Y F, et al. Highly permeable polyamide nanofiltration membranes fabricated via the construction of anionic covalent organic frameworks/polydopamine composite interlayer[J]. Sep Purif Technol, 2024, 347: 127590. [13]Agarwal P, Hefner R E, Ge S, et al. Nanofiltration membranes from crosslinked troger’s base polymers of intrinsic microporosity (PIMs)[J]. J Membr Sci, 2020, 595: 117501. [14]Jaiswal D K, Aand D, Rao P K, et al. Diazomethane mediated sealing of carboxylic moieties in MOFs: Opening doors for increased hydrophobicity[J]. Appl Surf Sci, 2023, 620: 156788. [15]Bonneau M, Lavenn C, Ginet P, et al. Upscale synthesis of a binary pillared layered MOF for hydrocarbon gas storage and separation[J]. Green Chem, 2020, 22(3): 718-724. [16]Fan W D, Wang X, Xu B, et al. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance[J]. J Mater Chem A, 2018, 6(47): 24486-24495. [17]Wu D, Zhang P F, Yang G P, et al. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications[J]. Coord Chem Rev, 2021, 434: 213709. [18]Xie Q, Chen Z Y, Jin W, et al. Tannic acid etched ZIF8 incorporated thin-film nanocomposite nanofiltration membrane with enhanced performance[J]. Appl Surf Sci, 2024, 660: 159975. [19]Zhao B, Long X L, Wang H L, et al. Polyamide thin film nanocomposite membrane containing polydopamine modified ZIF8 for nanofiltration[J]. Colloid Surf A - Physicochem Eng Asp, 2021, 612: 125971. [20]Wu Y Z, Li H X, Xu Z L, et al. Ceramic hollow fiber NF membrane incorporating UiO66 for the chlorinated hydrocarbons removal[J]. Chem Eng J, 2022, 435: 134789. [21]Xu X M, Hua G Y, Chen Y X, et al. Dually charged polyamide nanofiltration membrane incorporated UiO66(NH2)2: Synergistic rejection of divalent cations and anions[J]. Sep Purif Technol, 2023, 311: 123223. [22]Echaide-Górriz C, Sorribas S, Téllez C, et al. MOF nanoparticles of MIL68(Al), MIL101(Cr) and ZIF11 for thin film nanocomposite organic solvent nanofiltration membranes[J]. RSC Adv, 2016, 6(93): 90417-90426. [23]Samsami S, Sarrafzadeh M H, Ahmadi A. Surface modification of thin-film nanocomposite forward osmosis membrane with super-hydrophilic MIL-53 (Al) for doxycycline removal as an emerging contaminant and membrane antifouling property enhancement[J]. Chem Eng J, 2022, 431: 133469. [24]Gong Y Q, Gao S J, Tian Y Y, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UiO66NH2 active layer for high-performance desalination[J]. J Membr Sci, 2020, 600: 117874. [25]Liu Y Y, Zhu R, Srinivasakannan C, et al. Application of nanofiltration membrane based on Metal-Organic Frameworks (MOFs) in the separation of magnesium and lithium from salt lakes[J]. Separations, 2022, 9(11): 344. [26]Xia M J, Zhang W T, Xu Y C, et al. Polyamide membranes with a ZIF8@tannic acid core-shell nanoparticles interlayer to enhance nanofiltration performance[J]. Desalination, 2022, 541: 116042. [27]Song N, Xie X, Chen D, et al. Tailoring nanofiltration membrane with three-dimensional turing flower protuberances for water purification[J]. J Membr Sci, 2021, 621: 118985. [28]Zhao Q P, Zhao D L, Chung T S. Thin-film nanocomposite membranes incorporated with defective ZIF8 nanoparticles for brackish water and seawater desalination[J]. J Membr Sci, 2021, 625: 119158. [29]Lai Z P. Development of ZIF8 membranes: Opportunities and challenges for commercial applications[J]. Curr Opin Chem Eng, 2018, 20: 78-85. [30]Zhang H F, Zhao M, Yang Y, et al. Hydrolysis and condensation of ZIF8 in water[J]. Microporous Mesoporous Mat, 2019, 288: 109568. [31]Dai S, Simms C, Dovgaliuk I, et al. Monodispersed MOF808 nanocrystals synthesized via a scalable room-temperature approach for efficient heterogeneous peptide bond hydrolysis[J]. Chem Mater, 2021, 33(17): 7057-7066. [32]Lee G, Ahmed I, Hossain M A, et al. Preparation and functionalization of metal-organic frameworks, MOF808s, and their application in adsorption[J]. Coord Chem Rev, 2025, 524: 216325. [33]Lei Y T, Zhu L J, Xu J L, et al. The metal organic framework of UiO66NH2 reinforced nanofiltration membrane for highly efficient ion sieving [J]. J Environ Chem Eng, 2023, 11: 111222. [34]Zheng X, Wang T, Li S H, et al. Reticulated polyamide thin-film nanocomposite membranes incorporated with 2D boron nitride nanosheets for high-performance nanofiltration [J]. ACS Appl Mater Interfaces, 2023, 15: 28606-28617. [35]Efome J E, Rana D, Matsuura T, et al. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18619-18629. [36]Kang F W, Peng M Y, Lei D Y, et al. Recoverable and unrecoverable Bi3+-related photoemissions induced by thermal expansion and contraction in LuVO4∶Bi3+ and ScVO4∶Bi3+ compounds[J]. Chem Mater, 2016, 28(21): 7807-7815. [37]Bagi S D, Myerson A S, Román-Leshkov Y. Solvothermal crystallization kinetics and control of crystal size distribution of MOF808 in a continuous flow reactor[J]. Cryst Growth Des, 2021, 21(11): 6529-6536. [38]Xuan K, Pu Y F, Li F, et al. Metal-organic frameworks MOF808X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Chin J Catal, 2019, 40(4): 553-566. [39]Kevat S, Lad V N. Green synthesis of zirconium-based MOF-808 by utilizing sustainable synthesis approaches[J]. J Organomet Chem, 2023, 999: 122832. [40]Zhang H Y, Yang Y, Li C C, et al. A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution[J]. J Mater Chem A, 2021, 9(31): 16743-16750. [41]Pan X H, Zheng Y L, Chen R, et al. Cocrystal of sulfamethazine and p-aminobenzoic acid: Structural establishment and enhanced antibacterial properties[J]. Cryst Growth Des, 2019, 19(4): 2455-2460. [42]Tang X C, Luo Y W, Zhang Z J, et al. Effects of functional groups of -NH2 and -NO2 on water adsorption ability of Zrbased MOFs (UiO-66)[J]. Chem Phys, 2021, 543: 111093. [43]Li Z, Zhao S J, Wang H Z, et al. Functional groups influence and mechanism research of UiO66type metal-organic frameworks for ketoprofen delivery[J]. Colloid Surf B - Biointerfaces, 2019, 178: 1-7. [44]Liu H R, Zhang M, Zhao H, et al. Enhanced dispersibility of metal-organic frameworks (MOFs) in the organic phaseviasurface modification for TFN nanofiltration membrane preparation[J]. RSC Adv, 2020, 10(7): 4045-4057. [45]Wang Y, Yang Z X, Liu L, et al. Construction of high performance thin-film nanocomposite nanofiltration membrane by incorporation of hydrophobic MOF-derived nanocages[J]. Appl Surf Sci, 2021, 570: 151093. [46]Bano S, Mahmood A, Kim S J, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. J Mater Chem A, 2015, 3(5): 2065-2071. [47]Liu P P, Xing Q L, Huang R Q, et al. Incorporating hydrophilic amino-modified UiO66 nanoparticles into polyphenylsulfone membrane for improved dye/salt separation[J]. Chem Eng J, 2024, 499: 156096. [48]Huang X J, Chen Y B, Feng X S, et al. Incorporation of oleic acid-modified Ag@ZnO core-shell nanoparticles into thin film composite membranes for enhanced antifouling and antibacterial properties[J]. J Membr Sci, 2020, 602: 117956. [49]Li Y, Zhang X, Yang A, et al. Polyphenol etched ZIF8 modified graphene oxide nanofiltration membrane for efficient removal of salts and organic molecules[J]. J Membr Sci, 2021, 635: 119521. [50]Gu Z Y, Yu S L, Zhu J Y, et al. Incorporation of lysine-modified UiO66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity[J]. Desalination, 2020, 493: 114661. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号