Position:Home >> Abstract

Construction and application of quaternized polyether ether ketone
membranes for electrocatalytic CO2 reduction
Authors: LIU Xueling, GAO Ling, YANG Hongyan, LI Jinchao, CHEN Liang, CHEN Qin, ZHANG Yaping
Units: Engineering Research Center of Biomass Materials (Ministry of Education), School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
KeyWords: membrane; quaternized polyether ether ketone; electrocatalytic CO2 reduction
ClassificationCode:TQ425.23; TB324
year,volume(issue):pagination: 2025,45(3):23-34

Abstract:
In this paper, the polyether ether ketone containing benzyl bromomethyl (PEEK-Br) polymer was obtained by substitution reaction using the self-synthesized polyether ether ketone (PEEK) as the backbone. Subsequently, a series of quaternized polyether ether ketone (QAPEEK) membranes were prepared by reacting the PEEK-Br with different types of quaternary ammonium compounds. The chemical structures, micro-morphologies, physico-chemical properties and electrocatalytic CO2 reduction performances of QAPEEK membranes were systematically investigated. The results showed that the as-prepared QAPEEK-pip membrane with 1-methylpiperidine as the quaternary ammonium compound had a excellent OH- conductivity (15.62 mS/cm) and selectivity (56.2%). The CO Faraday efficiency and CO partial current density of H-type electrolytic cell with QAPEEK-pip membrane could reach 98.09% and -11.56 mA/cm2 at -1.7 V, respectively. And, the CO Faraday efficiency of MEA reactor with QAPEEK-pip membrane was 92.5% at -60 mA/cm2. More importantly, the QAPEEK-pip membrane exhibited excellent performance stability in the H-type electrolytic cell and MEA reactor after 24 h continuous operation. Based on these findings, this work not only investigated the influence of molecular structure and quaternary ammonium group type on the performance of QAPEEK membranes, but also provided practical references for the development of electrocatalytic CO2 reduction membrane material. 
 

Funds:
国家自然科学基金项目(22478321, U20A20125); 西南科技大学研究生创新基金项目(24ycx1072)

AuthorIntro:
刘雪铃(2000-), 女, 四川凉山州人, 硕士研究生, 从事电催化CO2还原膜的研究

Reference:
[1] Ma D, Jin T, Xie K Y, et al. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction[J]. J Mater Chem A, 2021, 9: 20897-20918.
[2]孙璇, 王曙光, 张蓉, 等. 两性聚醚醚酮离子交换膜制备及应用[J]. 膜科学与技术, 2023, 43(2): 17-23.
[3]刘旭升, 李泽洋, 杨宇森, 等.电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408.
[4]Samah A M, Fahim A Q, Chen C Z, et al. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO[J]. Sustain Energ Fuels, 2020, 4: 50-67.
[5]刘朝龙, 罗希, 张杨, 等. 电催化CO2 还原立方体Cu2O催化剂的制备及其在大面积膜电极反应器中的应用[J]. 先进电化学能源材料与器件, 2023, 29(5): 992-1000.
[6]Nguyen T N, Dinh C T. Gas diffusion electrode design for electrochemical carbon dioxide reduction[J]. Chem Soc Rev, 2020, 49(21): 7488-7504.
[7]Garg S, Rodriguez R, Carlos A, et al. How membrane characteristics influence the performance of CO2 and CO electrolysis[J]. Energy Environ Sci, 2022, 15(11): 4440-4469.
[8]Endrodi B, Kecsenovity E, Samu A, et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell[J]. Energy Environ Sci, 2020, 13(11): 4098-4105.
[9]Sreekanth N, Shoji M, Hidenori K, et al. Start-stop cyclic durability analysis of membrane-electrode assemblies using polyflourene-based electrolytes for an anion-exchange membrane water electrolyzer[J]. ACS Sustain Chem Eng, 2023, 11(25): 9295-9302.
[10]Bastian R, Konstantin V F, Bernhard S, et al. Impact of the PiperION anion exchange membrane thickness on the performance of a CO2-to-HCOOH three-compartment electrolyzer[J]. Ind Eng Chem Res, 2024, 63(9): 3986-3996.
[11]Wang X Z, Chen W T, Yan X M, et al. Pre-removal of polybenzimidazole anion to improve flexibility of grafted quaternized side chains for high performance anion exchange membranes[J]. J Power Sources, 2020, 451: 227813.
[12]Park S, Shao Y, Liu J, et al. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective[J]. Energy Environ Sci, 2012, 5: 9331-9344.
[13]张博, 张心爱, 刘雪铃, 等. 面向电催化CO2还原应用的季铵化聚酰亚胺膜的制备及性能研究[J]. 离子交换与吸附, 2024, 40(4): 312-321.
[14]Zhang M, Hou S Y, Li Y, et al. Swelling characterization of ionic responsive superabsorbent resin containing carboxylate sodium groups[J]. React Funct Polym, 2022, 170: 105144.
[15]Wu X Y, Chen N J, Klok H A, et al. Branched poly(aryl piperidinium) membranes for anion-exchange membrane fuel cells[J]. Angew Chem Int Ed, 2021, 61(7): 14892.
[16]Cao N, Sun Y R, Wang J, et al. Strong acid- and solvent-resistant polyether ether ketone separation membranes with adjustable pores[J]. Chem Eng J, 2020, 386: 124086.
[17]Syarifah N S S D, Muhammad N A M N, Juhana J, et al. Development of sulfonated poly(ether ether ketone)/polyethersulfone-crosslinked quaternary ammonium poly(ether ether ketone) bipolar membrane electrolyte via hot-press approach for hydrogen/oxygen fuel cell[J]. Int J Energy Res, 2021, 45(6): 9210-9228.
[18]Nehal H R, Sarthak M, Shubham M, et al. Fabrication of efficient bipolar membranes with functionalized MOF interfacial layer for generation of various carboxylic acids via electrodialysis[J]. Chem Eng J, 2023, 477: 146765.
[19]Ren X M, Chen Y Y, Wang Y, et al. Grafting modification of thin-film composite membrane with quaternary ammonium polyelectrolyte for Mg2+/Li+ separation[J]. J Environ Chem Eng, 2024, 12: 112223.
[20]Michael J B, Alexander J R, Javad N, et al. Plasma polymerization of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl in a collisional, capacitively coupled radio frequency discharge[J]. Biointerphases, 2020, 15(6): 1007.
[21]Peng H W, Yu K C, Liu X F, et al. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes[J]. Nat Commun, 2023, 14: 5483.
[22]Nhung L, Kim I Y, Young S Y. Quaternized chitosan-based anion exchange membrane composited with quaternized poly(vinylbenzyl chloride)/polysulfone blend[J]. Polymers, 2020, 12(11): 2714.
[23]任天翔, 滕晓波, 黄兴, 等. 聚醚醚酮的改性及应用研究进展[J]. 塑料科技, 2022, 50(9): 123-128.
[24] Nakwon L, Diem T D, Dukjoon K. Cyclic ammonium grafted poly (arylene ether ketone) hydroxide ion exchange membranes for alkaline water electrolysis with high chemical stability and cell efficiency[J]. Electrochim Acta, 2018, 271: 150-157.
[25]Yu J L, Shao Y S, Hong B C, et al. Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO)[J]. Appl Surf Sci, 2018, 442: 700-710.
[26]Zhang J W, Ling Q J, Wang Q X, et al. A quaternized poly(aryl piperidinium)/quaternary MXene based three-layer membrane for alkaline anion exchange membrane fuel cells[J]. Int J Hydrog Energy, 2024, 56: 1-6.
[27]Dong D W, Xiao Y F, Zhang M H, et al. Crosslinked anion exchange membranes with regional intensive ion clusters prepared from quaternized branched polyethyleneimine/quaternized polysulfone[J]. Int J Hydrog Energy, 2022,47: 24991-25006.
[28]Eric W L, Benjamin A W M, Fraser G L P, et al. Gas diffusion electrodes and membranes for CO2 reduction electrolysers[J]. Nat Rev Mater, 2022, 7: 55-64.
[29]Jeffery B G, Daniel J M, Joel W A, et al. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products[J]. Joule, 2018, 2: 381-420.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号