The study of aminating piperazine-2-carboxylic acid polyamide nanofiltration membranes in organic milieu |
Authors: SONG Gangfu1, HU Zhiyuan1, GAO Yawei2,WANG Xiaomao2 |
Units: 1. School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; 2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China |
KeyWords: polyamide nanofiltration membrane; piperazine-2-carboxylic acid; surface charge modulation; amination modification |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2025,45(3):44-53 |
Abstract: |
The amination modification strategies for polyamide nanofiltration (NF) membranes based on piperazine-2-carboxylic acid (PIP-COOH) were systematically investigated. The negatively charged NF membrane was first prepared via interfacial polymerization of PIP-COOH in aqueous phase and trimesoyl chloride (TMC) in organic phase, followed by modification through two methods: surface modification and layer-by-layer interfacial polymerization (LIP) using polyethylene polyamine (PEPA). The surface modification increased membrane surface positive charge density and water permeability [up to 170.0 L/(m2·h·MPa)], enhancing MgCl2 rejection (60.3%) but reducing Na2SO4 rejection (27.4%). However, the LIP produced membranes with moderate water permeability [75.0 L/(m2·h·MPa)], reduced pore size (0.37 nm), and near-neutral membrane surface, achieving the rejection of 71.5% for MgCl2 and 78.3% for Na2SO4. Perfluorinated compound rejection experiments highlighted the importance of charge effects stemming from membrane top surface under similar pore sizes. Characterization confirmed that the amination in organic milieu changed the membrane surface structure, charge distribution, and active layer thickness. |
Funds: |
国家自然科学青年基金项目(52300095) |
AuthorIntro: |
宋刚福(1977-),男,辽宁营口人,教授,博士研究生,研究方向为膜法水处理、饮用水安全与评价及河流生态研究等 |
Reference: |
[1]Liu W F, Livingston J L, Wang L, et al. Pressure-driven membrane desalination[J]. Nat Rev Methods Primers, 2024, 4(1):1-22. [2]Szymczyk A, Fievet P. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model[J]. J Membr Sci, 2005, 252(1): 77-88. [3]Li W L, Fu P, Lin W T, et al. High-performance thin-film composite (TFC) membranes with 2D nanomaterial interlayers: An overview[J]. Results Eng, 2024, 21: 101932. [4]Zhang Q F, Zhang Z G, Dai L, et al. Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes[J]. J Membr Sci, 2017, 537: 372-383. [5]Zhu Q Y, Xu Z Y, Fu J H, et al. Can the mix-charged NF membrane directly obtained by the interfacial polymerization of PIP and TMC?[J]. Desalination, 2023, 558: 116623. [6]Huang B Q, Tang Y J, Zeng Z X, et al. Microwave heating assistant preparation of high permselectivity polypiperazine-amide nanofiltration membrane during the interfacial polymerization process with low monomer concentration[J]. J Membr Sci, 2020, 596: 117718. [7]Li X, Wang Z, Han X L, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. J Membr Sci, 2021, 640: 119765. [8]Bai C L, Gu Z Y, Gao X R, et al. Stepwise increasing TMC concentration in NF membranes fabrication for controlled PA layer thickness, compactness, and charge distribution: Maintaining high permeance, enhancing desalination, and mechanistic insights[J]. Sep Purif Technol, 2025, 359: 130404. [9]Yu W H, Gan Z Q, Wang J R, et al. A novel negatively charged nanofiltration membrane with improved and stable rejection of Cr (Ⅵ) and phosphate under different pH conditions[J]. J Membr Sci, 2021, 639: 119756. [10]Zhu Z Y, Zhang Q P, Wan Z, et al. Highly negative charged triazine-based polyimide nanofiltration membrane for purification of vat dyes wastewater[J]. Sep Purif Technol, 2025, 364: 132470. [11]Boo C H, Wang Y K, Zucker I, et al. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery[J]. Environ Sci Technol, 2018, 52(13): 7279-7288. [12]Wu M B, Ye H, Zhu Z Y, et al. Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation[J]. J Membr Sci, 2022, 644: 119942. [13]Tian X Y, Ji D W, Feng H W, et al. Fabrication of positively charged composite nanofiltration membranes with “multilayer interlocking” structure based on ZIF8 layer anchored constrained growth strategy for Mg2+/Li+ separation[J]. J Membr Sci, 2025, 713: 123310. [14]Wu H h, Zhao H Y, Lin Y K, et al. Positively-charged PEI/TMC nanofiltration membrane prepared by adding a diamino-silane coupling agent for Li+/Mg2+ separation[J]. J Membr Sci, 2023, 672: 121468. [15]Xu P, Gonzales R R, Hong J, et al. Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment[J]. J Membr Sci, 2023, 668: 121251. [16]Tang M J, Liu M L, Li L, et al. Solvation-amination-synergy that neutralizes interfacially polymerized membranes for ultrahigh selective nanofiltration[J]. AIChE J, 2022, 68(6): e17602-17612. [17]Yao A Y, Du J C, Sun Q, et al. Flexible covalent organic network with ordered honeycomb nanoarchitecture for molecular separations[J]. ACS Nano, 2023, 17(22): 22916-22927. [18]He B Y, Peng H W, Chen Y, et al. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J Membr Sci, 2020, 608: 118202. [19]Liu L h, Du J C, Yao A Y, et al. Covalent organic network membranes with tunable nanoarchitectonics from macrocycle building blocks for graded molecular sieving[J]. ACS Appl Mater Interfaces, 2024, 16(3): 4283-4294. [20]张桢琳,王露,程亮,等.表面接枝法荷正电复合纳滤膜制备及其镁锂分离性能[J].膜科学与技术, 2024, 44(2):1-7. [21]Wu D H, Huang Y F, Yu S C, et al. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride[J]. J Membr Sci, 2014, 472: 141-153. [22]Choi W, Jeon S, Kwon S J, et al. Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization[J]. J Membr Sci, 2017, 527: 121-128. [23]Shin M G, Choi W, Lee J H. Highly selective and pH-stable reverse osmosis membranes prepared via layered interfacial polymerization[J]. Membranes, 2022, 12(2):156-169. [24]Tang S H, Chen Y H, Zhang H B, et al. A novel loose nanofiltration membrane with high permeance and anti-fouling performance based on aqueous monomer piperazine-2-carboxylic acid for efficient dye/salt separation[J]. Chem Eng J, 2023, 475: 146111. [25]Bowen W R, Welfoot J S. Modelling the performance of membrane nanofiltration-critical assessment and model development[J]. Chem Eng Sci, 2002, 57(7): 1121-1137. [26]Bandini S, Vezzani D. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization[J]. Chem Eng Sci, 2003, 58(15): 3303-3326. [27]Hayduk W, Laudie H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions[J]. AIChE J, 2004, 20(3): 611-615. [28]Hao Y F, Fang Y, Zhang L F, et al. Ternary deep eutectic solvent enhanced the diffusion control of amine monomer for highly permeable and anti-fouling polyamide nanofiltration membranes[J]. Sep Purif Technol, 2024, 330: 125371. [29]Mishra S, Singh A K, Singh J K. Ferrous sulfide and carboxyl-functionalized ferroferric oxide incorporated PVDF-based nanocomposite membranes for simultaneous removal of highly toxic heavy-metal ions from industrial ground water[J]. J Membr Sci, 2020, 593: 117422. [30]Gocen T, Bayari S H, Guven M H. Conformational and vibrational studies of arachidonic acid, light and temperature effects on ATR-FTIR spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 203: 263-272. [31]Feng Y, Meng X, Wu Z, et al. A novel polyurea nanofiltration membrane constructed by PEI/TA-MoS2 for efficient removal of heavy metal ions[J]. Sep Purif Technol, 2022, 300: 121785. [32]Freger V, Ramon G Z. Polyamide desalination membranes: Formation, structure, and properties[J]. Prog Polym Sci, 2021, 122: 101451. [33]Du Z W, Deng S B, Bei Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents - A review[J]. J Hazard Mater, 2014, 274: 443-454. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号