Position:Home >> Abstract

Coupling machine learning with high-throughput computing study
the structure-performance correlation of hydrophobic MOFs for
membrane-based CO2/C2H2 separation
Authors: HAN Rongmei, HAN Qi, ZHANG Zhengqing, SUN Yuxiu, QIAO Zhihua
Units: State Key Laboratory of Advanced Separation Membrane Materials, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
KeyWords: metal-organic frameworks; molecular simulation; machine learning; CO2/C2H2 separation
ClassificationCode:TQ051.8
year,volume(issue):pagination: 2025,45(3):136-144

Abstract:
The CO2/C2H2 separation in industrial processes has driven the development of highly efficient membrane materials. However, the presence of water under humidity environments can significantly impact the separation performance of these membranes. Thus, the development of separation membranes capable of maintaining superior performance under humidity conditions has become a critical area of focus. In this study, the hydrophobic MOF database was established, with the Henry coefficient of ZIF-8 serving as the reference. Then, the thermodynamic properties and diffusion coefficients of MOFs used for CO2/C2H2 separation were calculated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Based on these calculations, the membrane separation performance was evaluated, and the top 20 hydrophobic MOF membranes with high separation performance were identified. The MOF descriptors and simulation results were utilized as inputs to train and test five different machine learning (ML) models and the key factors influencing CO2/C2H2 separation performance were uncovered with the optimized ML model. Finally, the optimal range of MOF structural parameters for CO2/C2H2 separation was determined. This study provides theoretical foundations for the development and optimization of MOF membrane materials. 
 

Funds:
国家自然科学基金项目(22108202)

AuthorIntro:
韩荣美(2000-),女,山东德州人,硕士研究生,研究方向为MOF膜材料筛选与设计

Reference:
[1]Li X Y, Song Y, Zhang C X, et al. Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving[J]. Sep Purif Technol, 2021, 279: 119608.
[2]Meng L K, Yang L X, Chen C L, et al. Selective acetylene adsorption within an imino-functionalized nanocage-based metal-organic framework[J]. ACS Appl Mater Interfaces, 2020, 12(5): 5999-6006.
[3]Yang S Q, Xing B, Wang L L, et al. Boosting acetylene packing density within an isoreticular metal-organic framework for efficient C2H2/CO2 separation[J]. Chem & Bio Engineering, 2024, 1(3): 245-251.
[4]Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
[5]Li W B. Metal-organic framework membranes: Production, modification, and applications[J]. Prog Mater Sci, 2019, 100: 21-63.
[6]Kang Z X, Fan L L, Sun D F. Recent advances and challenges of metal-organic framework membranes for gas separation[J]. J Mater Chem A, 2017, 5(21): 10073-10091.
[7]Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428.
[8]Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?[J]. J Am Chem Soc, 2012, 134(36): 15016-15021.
[9]Zhang Y X, Liu Y, Hang Y T, et al. Crystal seeds induced interfacial growth of zirconium metal-organic framework membranes towards efficient hydrogen purification[J]. J Membr Sci, 2024, 689: 122171.
[10]Zhou S, Wei Y Y, Li L B, et al. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Sci Adv, 2018, 4(10): eaau1393.
[11]Liu H,Cong S,Yan X,et al. Honeycomb-like hofmann-type metal-organic framework membranes for C2H2/CO2 and H2/CO2 separation[J]. J Membr Sci, 2023, 669:121282.
[12]Xie L H, Xu M M, Liu X M, et al. Hydrophobic metal-organic frameworks: Assessment, construction, and diverse applications[J]. Adv Sci, 2020, 7(4): 1901758.
[13]Huang H L, Zhang W J, Liu D H, et al. Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal-organic frameworks: A molecular simulation study[J]. Ind Eng Chem Res, 2012, 51(30): 10031-10038.
[14]Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
[15]Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527.
[16]Shafiei M, Alivand M S, Rashidi A, et al. Synthesis and adsorption performance of a modified micro-mesoporous MIL-101 (Cr) for VOCs removal at ambient conditions[J]. Chem Eng J, 2018, 341: 164-174.
[17]Daglar H, Keskin S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations[J]. Coordin Chem Rev, 2020, 422: 213470.
[18]Gómez-Gualdrón D A, Colón Y J, Zhang X, et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage[J]. Energ Environ Sci, 2016, 9(10): 3279-3289.
[19]Wilmer C E, Leaf M, Lee C Y, et al. Large-scale screening of hypothetical metal-organic frameworks[J]. Nat Chem, 2012, 4(2): 83-89.
[20]Li S, Chung Y G, Simon C M, et al. High-throughput computational screening of multivariate metal-organic frameworks (MTV-MOFs) for CO2 capture[J]. J Phys Chem Lett, 2017, 8(24): 6135-6141.
[21]Zhang Z Q, Cao X H, Geng C X, et al. Machine learning aided high-throughput prediction of ionic liquid@ MOF composites for membrane-based CO2 capture[J]. J Membr Sci, 2022, 650: 120399.
[22]He Y J, Cao X H, Zhang Z Q, et al. Discovery of high-performing metal-organic frameworks for efficient SF6/N2 separation: A combined computational screening, machine learning, and experimental study[J]. Ind Eng Chem Res, 2023, 62(19): 7642-7649.
[23]Chung Y G, Haldoupis E, Bucior B J, et al. Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019[J]. J Chem Eng Data, 2019, 64(12): 5985-5998.
[24]Moghadam P Z, Fairen-Jimenez D, Snurr R Q. Efficient identification of hydrophobic MOFs: Application in the capture of toxic industrial chemicals[J]. J Mater Chem A, 2016, 4(2): 529-536.
[25]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1477-1504.
[26]Willems T F, Rycroft C H, Kazi M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Micropor Mesopor Mater, 2012, 149(1): 134-141.
[27]Rappé A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. J Am Chem Soc, 1992, 114(25): 10024-10035.
[28]Wilmer C E, Kim K C, Snurr R Q. An extended charge equilibration method[J]. J Phys Chem Lett, 2012, 3(17): 2506-2511.
[29]Harris J G, Yung K H. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. J Phys Chem, 1995, 99(31): 12021-12024.
[30]Fischer M, Hoffmann F, Frba M. New microporous materials for acetylene storage and C2H2/CO2 separation: Insights from molecular simulations[J]. Chem Phys Chem, 2010, 11(10): 2220-2229.
[31]Yang Q Y, Liu D H, Zhong C L, et al. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem Rev, 2013, 113(10): 8261-8323.
[32]Avci G, Velioglu S, Keskin S. High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture[J]. ACS Appl Mater, 2018, 10(39): 33693-33706.
[33]Daglar H, Keskin S. High-Throughput screening of metal organic frameworks as fillers in mixed matrix membranes for flue gas separation[J]. Adv Theory Simul, 2019, 2(11): 1900109.
[34]Halder P, Singh J K. High-throughput screening of metal-organic frameworks for ethane-ethylene separation using the machine learning technique[J]. Energ Fuel, 2020, 34(11): 14591-14597.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号