Scaling mechanism of gypsum and silica in membrane distillation based on electrochemical impedance spectroscopy |
Authors: ZHOU Lu, HAN Minyuan, LI Hanjie, LIU Jian, HAN Le |
Units: College of Environment and Ecology, Chongqing University, Chongqing 400045, China |
KeyWords: membrane distillation; electrochemical impedance spectroscopy; membrane scaling |
ClassificationCode:TQ028; TK2 |
year,volume(issue):pagination: 2025,45(3):155-162 |
Abstract: |
Membrane distillation (MD), as an emerging technology for treating high-salt wastewater, is limited in its wide application by inorganic fouling-induced clogging and membrane wetting. The in-depth analysis of membrane fouling phenomena still needs to be further explored, and interfacial electrical impedance characterization is a potential analytical entry point, but no systematic report on resolving membrane fouling has been reported in the literature. In this paper, we compare the fouling behavior of representative inorganic species, gypsum and silica, during the MD process, with gypsum leading to earlier membrane flux decline and significant membrane wetting. Scanning electron microscopy results confirmed significant differences in the morphology and distribution of gypsum and silica fouling, and mechanical tensile tests showed that gypsum scaling reduced the mechanical properties of membrane materials. Combined with the physicochemical characteristics of the interface between the external and internal membrane pores, electrochemical impedance spectroscopy (EIS) revealed that gypsum crystallized on the membrane surface and inside the pores, which reduced the membrane resistance, while silica formed a fouling layer mainly on the membrane surface, which led to an increase in the membrane surface resistance. The different fouling behaviors of gypsum and silica have different effects on the electrochemical performance of the membrane, and the results provide an important theoretical basis for the development of efficient fouling control strategies in future membrane processes. |
Funds: |
国家自然科学基金项目(52270058); 重庆市科技局新重庆青年创新人才项目(2024NSCQ-qncxX0233); 重庆市自然科学基金项目(CSTB2024NSCQ-MSX1123) |
AuthorIntro: |
周鹭(2000-), 女,重庆巴南人,硕士研究生,研究方向为膜法水处理、膜蒸馏的膜污染机理研究等 |
Reference: |
[1]Deshmukh A, Boo C, Karanikola V, et al. Membrane distillation at the water-energy nexus:Limits, opportunities, and challenges[J]. Energy Environ Sci, 2018, 11(5):1177-1196. [2]Wang W, Du X W, Vahabi H, et al. Trade-off in membrane distillation with monolithic omniphobic membranes[J]. Nat Commun, 2019, 10(1):3220. [3]Drioli E, Ali A, Mavedonio F. Membrane distillation:Recent developments and perspectives[J]. Desalination, 2015, 356:56-84. [4]Liu D, Yusufu K, Yu F, et al. Quasi-critical condition to balance the scaling and membrane lifespan tradeoff in hypersaline water concentration[J]. Water Res, 2023, 242:120265. [5]ChenY, Wang Z, Jennings G K, et al. Probing pore wetting in membrane distillation using impedance:Early detection and mechanism of surfactant-induced wetting[J]. Environ Sci Technol Lett, 2017, 4(11):505-510. [6]Li C, Li X, Du X, et al. Elucidating the trade-off between membrane wetting resistance and water vapor flux in membrane distillation[J]. Environ Sci Technol, 2020, 54(16):10333-10341. [7]Wang Z, Chen Y, Sun X, et al. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant[J]. J Membr Sci, 2018, 559:183-195. [8]Wong P W, Jia M, Boey M W, et al. Evaluating and predicting surfactant-induced hydrophilization of pore channels in membrane distillation[J]. J Membr Sci, 2024, 691:122242. [9]Christie K S S, Yin Y, Lin S, et al. Distinct behaviors between gypsum and silica scaling in membrane distillation[J]. Environ Sci Technol, 2020, 54(1):568-576. [10]Xiang W, Han M, Dong T, et al. Fouling dynamics of anion polyacrylamide on anion exchange membrane in electrodialysis[J]. Desalination, 2021, 507(1):115036. [11]Zhang N, Halali M A, De Lannoy C F. Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy[J]. Sep Purif Technol, 2020, 242:116823. [12]Vadhva P, Hu J, Johnson M J, et al. Electrochemical impedance spectroscopy for all-solid-state batteries:Theory, methods and future outlook[J]. Chem Electro Chem, 2021, 8(11):1930-1947. [13]Nghiem L D, Cath T. A scaling mitigation approach during direct contact membrane distillation[J]. Sep Purif Technol, 2011, 80(2):315-322. [14]Xie S, Li Z, Wong N H, et al. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation[J]. J Membr Sci, 2022, 648:120297. [15]Scott S, Galeczka I M, Gunnarsson I, et al. Silica polymerization and nanocolloid nucleation and growth kinetics in aqueous solutions[J]. Geochim Cosmochim Acta, 2024, 371: 78-94. [16]Zhang Y P, Xue D F. In-situ micro-raman spectroscopy study of gypsum crystallization driven by chemical reaction[J]. J Mol Struct, 2020, 1210:128043. [17]Vora A, Ali S. Prolonged hypercalcemia from antibiotic-eluting calcium sulfate beads[J]. AACE clinical case reports, 2019, 5(6):349-351. [18]Christenson H K. Two-step crystal nucleation via capillary condensation[J]. Crystengcomm, 2013, 15(11):2030-2039. [19]Choi Y, Jang Y, Lee S. Prediction of silica fouling using mathematical model and artificial neural network in a direct contact membrane distillation[J]. Desalin. Water Treat, 2017, 90:16-22. [20]Zhang W, Blackburn R S, Dehghani-Sanij A A. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites[J]. Scripta Mater, 2007, 56(7): 581-584. [21]Antony A, Chilcott T, Coster H, et al. In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy[J]. J. Membr. Sci, 2013, 425-426:89-97. [22]Dornbusch D A, Hilton R, Gordan M J, et al. Effects of sonication on EIS results for zinc alkaline batteries[J]. ECS Electrochem Lett, 2013, 2(9): 89-92. [23]Mallikarjun A, Siva Kumar J, Sreekanth T, et al. Facile fabrication of NiO doped PVDF-co-HFP/Mg(ClO4)2 polymer composite membrane as a counter electrode in low-cost dye-sensitized solar cells[J]. Polym-Plast Tech Mater, 2022, 62(2):145-161. [24]Tomas M, Remis T, Gholami F. The determination of effective diffusion coefficient from the electrochemical impedance spectra of composite poly (vinyl alcohol) membranes[J]. Environ Prog Sustain Energy, 2019, 38(5):13195. [25]Liu J, Yu Y, Chen S, et al. Electrochemical analysis of ion-exchange membranes fouling during electrodialysis treatment of real shale gas flowback water[J]. J Membr Sci, 2024, 706:122954. [26]Yin Y, Wang W, Kota A K, et al. Elucidating mechanisms of silica scaling in membrane distillation:Effects of membrane surface wettability[J]. Environ Sci-Wat Res Technol, 2019, 5(11):2004-2014. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号