Research on the performance optimization and stability of PG/PEI co-deposition modified hollow fiber aeration membrane facilitated by sodium periodate |
Authors: LI Yixin, ZHOU Junhao, LIU Ziqiang, WU Qiang, WANG Xuan, LYU Xiaolong, ZHANG Mengmeng, HU Haonan |
Units: State Key Laboratory of Advanced Separation Membranes Materials, School of Materials Science and Engineering, Institute of Biochemical Engineering, Tiangong University, Tianjin 300387,China |
KeyWords: membrane aerated biofilm reactor; hydrophobic membrane; pyrogallol; polyethyleneimine; co-deposition; sodium periodate |
ClassificationCode:TQ028.8 |
year,volume(issue):pagination: 2025,45(3):170-178 |
Abstract: |
The membrane aerated biofilm reactor (MABR) demonstrates high efficiency, cost-effectiveness, and environmental friendliness in wastewater treatment. As the core component of MABR systems, membrane materials require superior oxygen transfer performance and stability. To address the limitations of hydrophobic polyvinylidene fluoride (PVDF) microporous membranes in oxygen transfer efficiency and stability in existing MABR research, this study employed a surface co-deposition modification method using pyrogallol (PG) and polyethyleneimine (PEI) on self-made hydrophobic PVDF microporous membranes, with the introduction of sodium periodate (SP) as an oxidant. Results revealed that the modified membrane exhibited enhanced hydrophilicity compared to the original membrane, with the water contact angle decreasing from 89.7° to 52.5°, bubble point pressure increasing from 8 kPa to 66 kPa, and oxygen transfer coefficient rising from 0.76×10-2 /min to 1.47×10-2 /min (a 1.93-fold improvement), indicating significantly enhanced oxygen transfer performance. Furthermore, the addition of SP substantially reduced co-deposition time and improved membrane stability. Under ultrasonic treatment and in strong acid, neutral, strong alkaline, and high-salt solutions, the oxygen transfer performance decay rates of modified membranes without SP were 14.9%, 13.0%, 3.2%, 26.0%, and 24.7%, respectively. With SP addition, these decay rates decreased to 11.6%, 2.0%, 0.7%, 16.3%, and 3.4%, respectively, demonstrating improved stability across all conditions, with particularly superior performance in high-salt environments. |
Funds: |
国家自然科学基金项目(51978466); 天津市科技计划项目(21ZYJDJC00050) |
AuthorIntro: |
李一心(2000-),男,甘肃庆阳人,从事疏水性PVDF膜表面改性及MABR应用研究 |
Reference: |
[1]包进锋, 朱品尚, 朱圆圆,等. 膜曝气生物膜反应器膜传氧速率的影响因素研究[J]. 膜科学与技术, 2023, 43(2): 123-127,149. [2]袁晓彤, 郭东岳, 王暄,等. 氧化剂高碘酸钠诱发多巴胺自聚合在MBfR膜表面改性中的应用[J]. 膜科学与技术, 2017, 37(5): 36-41. [3]张杨, 李庭刚, 强志民,等. 膜曝气生物膜反应器研究进展[J]. 环境科学学报, 2011, 31(6): 1133-1143. [4]张利娟, 温琦, 王暄,等. 膜表面改性技术在MBfR领域的应用[J]. 水处理技术, 2015, 41(8): 31-35. [5]Hu Q B, Luo Y C. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications[J]. Carbohydrate Polym, 2016, 151: 624-639. [6]He Q, Shi B, Yao K. Interactions of gallotannins with proteins, amino acids, phospholipids and sugars[J]. Food Chem, 2006, 95(2): 250-254. [7]Ma W J, Ding Y C, Zhang M J, et al. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation[J]. J Hazard Mater, 2020, 384: 121476. [8]Jeon J R, Kim J H, Chang Y S. Enzymatic polymerization of plant-derived phenols for material-independent and multifunctional coating[J]. J Mater Chem B, 2013, 1(47): 6501-6509. [9]Xu L Q, Neoh K G, Kang E T. Natural polyphenols as versatile platforms for material engineering and surface functionalization[J]. Prog Polym Sci, 2018, 87: 165-196. [10]Yu H, Zhong Q Z, Liu T G, et al. Surface deposition of juglone/FeIII on microporous membranes for oil/water separation and dye adsorption[J]. Langmuir, 2019, 35(10): 3643-3650. [11]Li J, Sun Y N, Yang X D, et al. Iron-based oxides anchored on the catechol/silane-coated polypropylene nonwoven fabrics for effective removal of anionic dyes[J]. Acs Appl Polym Mater, 2024, 6(10): 6150-6161. [12]Xie H, Shen L, Xu Y, et al. Tannic acid (TA)-based coating modified membrane enhanced by successive inkjet printing of Fe3+ and sodium periodate (SP) for efficient oil-water separation[J].J Membr Sci, 2022, 660: 120873. [13]Jiang B, Cheng K, Zhang N, et al. One-step modification of PVDF membrane with tannin-inspired highly hydrophilic and underwater superoleophobic coating for effective oil-in-water emulsion separation[J]. Sep Purif Technol, 2021, 255: 117724. [14]Chen Y, Liu Q J. Oxidant-induced plant phenol surface chemistry for multifunctional coatings: Mechanism and potential applications[J]. J Membr Sci, 2019, 570: 176-183. [15]吕晓龙. 中空纤维多孔膜性能评价方法探讨[J]. 膜科学与技术, 2011, 31(2): 1-6. [16]Yang H C, Zhong W, Hou J, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation[J]. J Membr Sci, 2017, 523: 1-7. [17]吴强, 周军浩, 李一心,等. 具有坚固孔隙结构的超疏水纳米纤维膜设计用于膜蒸馏[J].膜科学与技术, 2024, 44(1): 63-70. [18]Yang X B, Yuan L C, Zhao Y Y, et al. Mussel-inspired structure evolution customizing membrane interface hydrophilization[J]. J Membr Sci, 2020, 612: 118471. [19]Liu R R, Chen Q, Cao M Y, et al. Robust bio-inspired superhydrophilic and underwater superoleophobic membranes for simultaneously fast water and oil recovery[J]. J Membr Sci, 2021, 623: 119041. [20]Wang A Q, Fang W X, Zhang J Y, et al. Zwitterionic nanohydrogels-decorated microporous membrane with ultrasensitive salt responsiveness for controlled water transport[J]. Small, 2020, 16(9),:1903925. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号