High dispersion of COF in ion conduction membranes improving the performance of vanadium redox flow battery |
Authors: FANG Tingxu1, PANG Bo1, CUI Fujun2, JIANG Xiaobin1, WU Xuemei1, HE Gaohong1 |
Units: 1. State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, China; 2. Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China |
KeyWords: proton exchange membrane; vanadium redox flow batteries; covalent organic frameworks; high dispersion |
ClassificationCode:TM912.1 |
year,volume(issue):pagination: 2025,45(4):95-103 |
Abstract: |
A novel preparation method for high dispersing COF-based composite membranes was proposed through a monomer-casting followed by solvothermal in-situ growth strategy. The strong hydrogen bonding interactions between sulfonated polybenzimidazole (PBIOSO3H) and sulfonated amine monomer enabled the uniform dispersion of monomer in the precursor membrane, and the in-situ confined growth of sulfonic acid-functionalized covalent organic framework (SCOF), effectively addressing the aggregation issue of COFs in membranes. The incorporation of sulfonic COF significantly enhanced membrane performance: proton conductivity increased by 89.7%, surface resistance decreased by 48.6%, and proton/vanadium ion selectivity improved 1.5-fold. When applied in vanadium redox flow battery, the composite membrane demonstrated superior energy efficiency of 79.5% at 200 mA/cm2, outperforming commercial Nafion212 membrane (69.9%). These results validate that the proposed monomer-casting/in-situ growth approach is effective for fabricating high dispersion of COF in ion-conductive membranes, and thus effectively enhances the performance of vanadium redox flow battery. |
Funds: |
国家自然科学基金项目(22378042, 22021005) |
AuthorIntro: |
房庭旭(1999-),男,辽宁辽阳人,硕士研究生,主要研究方向为离子传导膜及液流电池 |
Reference: |
[1]贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术, 2015, 4(05): 467-475. [2]陈寅超. 储能技术在光伏并网发电系统中的应用[J]. 集成电路应用, 2024, 41(12): 314-315. [3]Deguenon L, Yamegueu D, Moussa Kadri S, et al. Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of electrochemical battery storage systems[J]. J Power Sources, 2023, 580: 233343. [4]李章溢, 房凯, 刘强, 等. 储能技术在电力调峰领域中的应用[J]. 电器与能效管理技术, 2019(10): 69-73. [5]胡永强. 分布式储能系统在电力负荷管理中的应用研究[J]. 城市建设理论研究(电子版), 2025(3): 1-3. [6]Zhao N, Platt A, Riley H, et al. Strategy towards high ion selectivity membranes for all-vanadium redox flow batteries[J]. J Energy Storage, 2023, 72: 108321. [7]Cao S, Tan J, Ma L, et al. Covalent organic frameworks-based functional separators for rechargeable batteries: Design, mechanism, and applications[J]. Energy Storage Mater, 2024, 66: 103232. [8]Pang B, Du R, Chen W, et al. Self-supporting sulfonated covalent organic framework as a highly selective continuous membrane for vanadium flow battery[J]. Energy Storage Mater, 2024, 67: 103293. [9]曹鹏程, 吴和培, 刘浩, 等. 全钒液流电池电解液及隔膜研究进展[J]. 化工生产与技术, 2024, 30(06): 13-17. [10]Bui T T, Shin M, Abbas S, et al. Sulfonated para-polybenzimidazole membranes for use in vanadium redox flow batteries[J]. Adv Energy Mater, 2024: 2401375. [11]Sharma J, Kulshrestha V. Advancements in polyelectrolyte membrane designs for vanadium redox flow battery (VRFB)[J]. Results Chem, 2023, 5: 100892. [12]Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chem Rev, 2020, 120(16): 8814-8933. [13]Yuan S, Li X, Zhu J, et al. Covalent organic frameworks for membrane separation[J]. Chem Soc Rev, 2019, 48(10): 2665-2681. [14]Cao L, Wu H, Cao Y, et al. Weakly humidity-dependent proton-conducting cof membranes[J]. Adv Mater, 2020, 32(52): 2005565. [15]Di M, Hu L, Gao L, et al. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries[J]. Chem Eng J, 2020, 399: 125833. [16]Wang R, Shi X, Xiao A, et al. Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations[J]. J Membr Sci, 2018, 566: 197-204. [17]Liu H, Liu M, Zhang Y, et al. Ultrahigh ion selectivity composite membrane contained cationic covalent organic nanosheets for vanadium redox flow battery[J]. J Membr Sci, 2025, 713: 123314. [18]Wang J, Xu W, Xu F, et al. A polybenzimidazole-covalent organic framework hybrid membrane with highly efficient proton-selective transport channels for vanadium redox flow battery[J]. J Membr Sci, 2024, 695: 122470. [19]Wang Y, Ren L, Wang J, et al. In-situ growth of anionic covalent organic frameworks efficaciously enhanced the monovalent selectivity of anion exchange membranes[J]. J Membr Sci, 2022, 659: 120818. [20]Zhang L, Gao Z, Kong Y, et al. Enhanced mechanical property and proton conductivity of polybenzimidazole membrane by in-situ synthesized ionic covalent organic framework[J]. J Membr Sci, 2024, 708: 123088. [21]Pang B, Zhang Q, Yan X, et al. Superior acidic sulfate ester group based high conductive membrane for vanadium redox flow battery[J]. J Power Sources, 2021, 506: 230203. [22]Li Q, Gao H, Zhao Y, et al. Covalent organic framework interlayer spacings as perfectly selective artificial proton channels[J]. Angew Chem Int Ed, 2024, 63(23): e202402094. [23]Xie G, Cui F, Zhao H, et al. Free-standing cof nanofiber in ion conductive membrane to improve efficiency of vanadium redox flow battery[J]. J Membr Sci, 2024, 708: 123052. [24]Xu W, Wang Y, Wu Y, et al. Sub-2-nm channels within covalent triazine framework enable fast proton-selective transport in flow battery membrane[J]. Adv Funct Mater, 2023, 33(21): 2300138. [25]Di M, Sun X, Hu L, et al. Hollow cof selective layer based flexible composite membranes constructed by an integrated “casting-precipitation-evaporation” strategy[J]. Adv Funct Mater, 2022, 32(22): 2111594. [26]Meng X, Peng Q, Wen J, et al. Sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquid-covalent organic framework complex[J]. J Appl Polym Sci, 2023, 140(18): e53802. [27]Meng X, Peng Q, Peng L, et al. In situ growth of covalent organic framework on graphene oxide nanosheet enable proton-selective transport in flow battery membrane[J]. J Power Sources, 2024, 609: 234690. [28]Li J, Xu F, Chen Y, et al. Sulfonated poly(ether ether ketone)/sulfonated covalent organic framework composite membranes with enhanced performance for application in vanadium redox flow batteries[J]. ACS Appl Energ Mater, 2022, 5(12): 15856-15863. [29]Pang B, Du R, Chen W, et al. Self-supporting sulfonated covalent organic framework as a highly selective continuous membrane for vanadium flow battery[J]. Energy Storage Mater, 2024, 67: 103293. [30]Xu W, Xu J, Yi Z, et al. Zwitterionic channels within covalent organic frameworks facilitate proton-selective transport for flow battery membrane[J]. Chem Eng Sci, 2024, 299: 120468. [31]Zhang Y, Liu H, Liu M, et al. Enhanced selectivity of speek membrane incorporated covalent organic nanosheet crosslinked graphene oxide for vanadium redox flow battery[J]. J Membr Sci, 2025, 714: 123410. [32]Afzal, Ren Y, Wang S, et al. Highly proton-conductive and stable sulfonated covalent organic framework hybrid membrane for vanadium redox flow battery[J]. J Membr Sci, 2025, 722: 123863. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号